

High Speed Token Ring PMD Options

Benny Jensen Director of Engineering Olicom A/S, Denmark

General Requirements

- Must utilize existing PHY technology to meet time-to-market requirement
- Preferably standardized interface to MAC to utilize on-market components
- Preferably autosensing 4/16/High Speed

Existing Technologies, Overview

100Mbit Ethernet

- *TX*
- **T**4
- VG-AnyLAN
- 155Mbit ATM on UTP
- ◆ 100Mbit CDDI
- Other possibilities?
 - 128Mbit not generally available technology

Ethernet 100Base-TX

- Full duplex capable, 125MHz over one pair in each direction, MLT-3 encoding
- Requires two pairs UTP Cat. 5
- Good backing, "has won" 100M Ethernet battle
- Second generation silicon integrates PMD and PHY in single CMOS device
- Integrated PHY/PMD support from at least
 - Micro Linear
 - ICS
 - TDK Semi
 - Level One
 - More to follow (Intel, Davicom)

Ethernet 100Base-T4

- Half duplex, 25MHz ternary data on three pairs (last pair for collision detect)
- Requires 4 pairs UTP Cat. 3
- Poor backing, more complex to design than anticipated
- PHY/PMD support:
 - Brooktree
 - Cypress
 - Pericom

Ethernet 100VG-AnyLAN

- Half-duplex, transmits binary data on four pairs (demand priority, no collision detect)
- Requires 4 pairs UTP Cat. 3
- Loses backing, even from Hewlett-Packard
- PHY/PMD support:
 - Lucent Technologies

ATM 155 UTP

- Full duplex, 155 MHz over one pair in each direction, MLT-3 encoding
- Requires two pairs UTP Cat. 5
- Current silicon requires multiple ICs: BiCMOS equalizer, serializer/deserializer with clock recovery
- PMD equalizer support: GEC Plessey, Micro Linear, National, Pulse, TDK Semi, Wolfson and others
- Related silicon support: AMCC, Fujitsu, IGT, PMC-Sierra, others
- Silicon integration and migration to CMOS needed for cost effectiveness!

FDDI over Copper

- Also known as: CDDI, SDDI and TP/FDDI
- Full duplex capable, 100 MHZ over one pair in each direction, MLT-3 encoding
- Requires two pairs UTP Cat. 5 or STP Type 1
- PMD considerations as 100Base-TX

Other Possibilities

- 100Base-T2: 100Mb/s over one pair in each direction, Cat. 3 with CAP modulation
- Emerging technology (not commercially available yet), expensive
- ATM 155 over Cat. 3 with CAP modulation (Carrier-less Amplitude-Phase)
- Emerging technology (not commercially available yet), expensive

MAC Standard Interfaces

• *MII (Media Independent Interface):*

- Nibble-wide 25MHz full duplex data, dominant in 100 Ethernet
- Includes serial management path with well defined register set
- Includes dedicated control pins for Ethernet (both T and VG)
- UTOPIA Level 1 (Universal Test and Operations PHY Inteface for ATM):
 - Byte-wide 25MHz full duplex data, dominant in ATM 155
 - No management path included
- SATURN:
 - Derivative of UTOPIA, used by PMC-Sierra (S/UNI-Lite)
 - No management path included
 - Both UTOPIA and SATURN control signals match to ATM cells only

Conclusion, PMD

• PMD Recommendation:

- 100Base-TX best choice for cost effectiveness and silicon availability
- ATM155 PMD is faster (could be "160/16"), but currently at double cost
- PMD key functional blocks:
 - Adaptive equalizer, Baseline Wander Correction, Clock recovery PLL, serializers can be all inherited directly from 100Base-TX

Conclusion, PHY/MAC Interface

• PHY/MAC Interface:

- MII interface best choice to match 100Mbit/s with integrated management path
- Existing devices are not directly suited for High Speed Token Ring: No need for 4B5B encoder, scrambler, auto-negotiation
- Standard management registers must be defined (like MII)
- Standard need only define High Speed part, dual speed support is left to individual implementation