100 Mbit/s 802.5 PHY Layer – Changes to Standard

T. J. Ross IBM, NHD, D63/656 RTP, NC

Phone: (919) 543-2633 FAX: (919) 253-9508

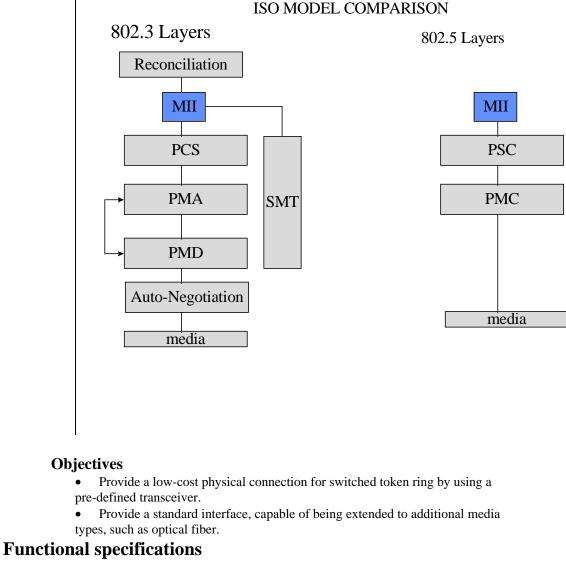
tamross@vnet.ibm.com

September 29, 1997

1	Editorial Comments
2	(Items in Itlaics are comments and explanations. They are NOT intended to be included in the
3	standard)
4	
5	(Bob, Ken: the 802.3 world sometimes publishes a "BLUE BOOK" which contains the
6	explanations and history of how and why items in the standard were chosen. It is meant to help
7	implementers and future revisors to understand the reasoning behind the standard. Usually the
8	standard itself is too terse to get a feel for the these issues. Do we wish to do anything of this
9	sort?)

10	
11	MAC/PHY Interface
12	Overview
13	Scope
14	This clause describes the interface between the MAC and PHY layers of the
15	100Mbps dedicated token ring. The PHY interface is precisely defined as the
16	Media Indedendent Interface (MII). {802.3 clause 22 "Reconciliation
17	Sublayer} both defines the MII and maps the signals into primitives used by the
18	802.3 MAC. This clause maps the MII signals into MAC primitives used by the
19	802.5 MAC.
20	Objectives
21	 Define a simple mapping of MII signals into MAC primitives
22	• Maintain, as closely as possible, the 4/16 802.5 signalling interface.
23	
24	9.a.1 100 Mbps Protocol Support (Common)
25	
26	x.1 Overview
27	An explicit embodiment of the MII is not required. If a physical embodiment of
28	the MII is not present, then it is strongly recommeded that the implementation
29	provide control and status mechanisms equivalent to those described in {802.3-
30	22}. If an exposed MII does exist, it shall meet all requirements of {802.3-22.x}.
31	x.2 MAC Interface Service Specification
32	The following service primitives specify the required information that is passed
33	between the MAC and the PHY. This service specification replaces the service
34	specification defined in 5.1.2, 5.1.3, and 5.1.4. (or should this be in x.1 about all
35	of chapter 5).
36	
37	The service primitives are grouped into two classes: physical signalling (PS) and
38	physical station management (PSMT). All PHY activities related to the control,
39	transmission, and reception of data are included in the PS primitives. Activities
40	related to the configuration and negotiation of the PHYs and related status are
41	included in the PSMT primitives. Implementation of the set of PSMT functions
42	is optional, however if implemented the functions shall be compliant with the
43	description given.
44	
45	(Question: how parallel do we wish to be with the 802.3? All of these primitives
46	could be references to those defined in 802.3 22.2.1 "Mapping of MII signals to
47	PLS service primitves and station management". But some concepts might need
48	to be changed, e.g. how we handle inter-frame bits. A level of abstraction will
49	provided us with the ability to change definitions, but might also become very
50	confusing, especially since the names will be so similar.)
51	
52	I suppose, in a perfect world, I would need to completely re-write the
53	reconciliation layer specification. That would conform nicely to the OSI model
54	layers. Instead, I'm really writing a layer the "reconciles" the 802.3
55	reconciliation layer to the 802.5 MAC. (Ken – how picky is the standards group
56	about well-structured documents versus ones that just work?)
57	
58	In the following, a nibble is a 4-bit interface, exchanged with the MAC at a 40 ns
59	time interval.
60	x.2.1 PS_UNITDATA.indication
61	This primitive defines the transfer of data from the PSC to the MAC.

62	
63	PS_UNITDATA.indication[Rcv_symbol (ref)]
64	
65	The Rcv_symbol specified is one of the following:
66	
67	• Start_delimiter
68	• Data_nibble
69	• End_delimiter
70	• Idle
71	
72	Start_Delimiter is a 2-nibble field which indicates the reception of the beginning
73	of a valid frame. The Start_Delimiter is equivalent to the {802.3-24.2.2.1.4
74	Start-of-stream Delimiter (SSD)}.
75	
76	The analogous 802.3 primitive is PLS_DATA.indicate(INPUT_UNIT) which has
77	values 0 or 1. No value is defined for SDEL or EDEL. I assume (always
78	dangerous) that they are not needed because data is only indicated between
79	these boundaries, i.e. there is no "indication" between frames. Can we live with
80	this?
81	
82	[Note for Tam: please check the exact requirements for RX_DV per 802.3
83	Figure 22-6. Must RX_DV rise immediately after SSD? Clause 22 does not
84	require, but clause 24 (TX) state diagram definitely does!]
85	
86	Data_nibble is a 1-nibble value containing the data received from the medium.
87	Data_nibble is the MII signal RXD<3:0>. Rcv_symbol has the state
88	Data_nibble after Start_delimiter has been received up until End_delimiter has
89	been received.
90	
91	End_Delimiter indicates the end of a valid frame. The End_Delimiter is
92	equivalent to the {802.3-24.2.2.1.5 End-of-stream delimiter (ESD)}.
93	End_Delimiters not on nibble boundards may not be detected.
94	
95	Idle is a 1-nibble value used only between frames. Rcv_symbol has the state Idle
96	after End_delimiter has been received up until tart_delimiter has been received.
97	


Figure X.XX:

98	
99	
100	
101	
102	x.2.2 PS_UNITDATA.request
103	
104	This primitive defines the transfer of data from the MAC to the PSC.
105	
106	PS_UNITDATA.request[Tx_symbol (ref)]
107	
108	The Tx_symbol specified is one of the following:
109	
110	• Start_delimiter
111	• Data_nibble
112	• End_delimiter
113	• Idle
114	
115	Start_Delimiter is a 2-nibble field which indicates the reception of the beginning
116	of a valid frame. The Start_Delimiter is equivalent to the {802.3-24.2.2.1.4
117	Start-of-stream Delimiter (SSD)}.
118	
119	The analogous 802.3 primitive is PLS_DATA.request(OUTPUT_UNIT) which
120	has values 0,1, or DATA_COMPLETE. Since there is a requirement on the
121	reconciliation sublayer to generate TX_EN with the first nibble of data, there is
122	no need for a corresponding primitive. Can we life with that?
123	
124	Data_nibble is a 1-nibble value containing the data to be transmitted on the
125	medium. Data_nibble is the MII signal TXD<3:0>. Tx_symbol has the state
126	Data_nibble after Start_delimiter has been received up until End_delimiter has
127 128	been received. At all other times, the TXD<3:0> is ignored by the PHY.
128	End_Delimiter indicates the end of a valid frame. The End_Delimiter is
129	
150	equivalent to the {802.3-24.2.2.1.5 End-of-stream delimiter (ESD)}.

131	
132	Idle is a 1-nibble value used only between frames. Tx_symbol has the state Idle
133	after End_delimiter has been received up until Start_delimiter has been received.
134 X	.2.3 PS_STATUS.indication
135	This primitive is used by the PSC to inform the MAC of errors and significant
136	status changes.
137	
138	PS_STATUS.indication [Receive_Clock (ref), ???
139	Transmit_Clock (ref), ???
140	Signal_Acquired (ref),
141	Frame_Violation (ref),
142	Burst_Error (ref)]
143	
144	Frame_Violation is the logical AND of {MII Receive_Error (RX_ER)} with
145	{MII Receive_Data_Valid (RX_DV)}
146	
147	Burst_Error is the logical AND of {MII Receive_Error (RX_ER)} with NOT
148	{MII Receive_Data_Valid (RX_DV)}
149	
150	Signal_Acquired is equivalent to {MII Carrier_Sense (CRS)}.
151 X	.2.4 PS_CONTROL.request
152	This primitive is used by the MAC to request certain actions of the PSC.
153	
154	PS_CONTROL.request [Initialize (ref),
155	Reset (ref),
156	Transmit_Error (ref) ???]
157	
158	Initialize shall be defined as setting bit 0.9 of the PSMT_CONTROL.request
159	(Restart Auto-Negotion), and setting all other bits to the normal operation state
160	(if defined). If the PHY reports via bit 1.3 of the PSMT_STATUS.indication
161	that it lacks the ability to perform Auto-Negotiation then Initialize shall be
162	defined as setting all bits to the normal operation state (if defined). The PHYs
163	shall be able to correctly exchange data with ?? s of the assertion of Initialize.
164	
165	(This keeps getting worse
166	come alive from reset or power-down: (no, this is included below)
167 168	500 ms AN waits in TRANSMIT DISABLE before starting
169	1500 ms
170	exchange base pages (I found this before, but can't now!)
170	1000 ms
172	bring up TX link
172	1000 ms
174	total:
175	3500 ms
176	
177	The time needed to negotiate extended pages is open ended, but as of now, I see
178	no reason for us to use extended pages. The auto-negotiate does not start until
179	a maximum of 500 ms after either Reset or Power-down are cleared to zero.)
180	· · · ·
181	Reset is intended to halt operation of the PHY. The exact state of the PHY after
182	Reset is asserted is undefined. Suggested actions are setting the Reset (0.15) or
183	Power Down (0.11) bits of the PSMT_CONTROL.request. (What happens if a
184	REMOVED station receives a frame???)

185	
186	Transmit_Error (do we need this?)
187	
188	The 802.5 concepts, INSERT and REMOVE, each have two applications: the
189	transition into and out of the BYPASS state (i.e. opening and closing the
190	adapter); and the transition into and out of the LOBE TEST state (i.e. preparing
191	a wrap path for transmission testing). Here, the two applications have
192	SEPARATE primitives. Initialize and Reset are used to transition from and to
193	the BYPASS state. The LOBE TEST transitions are performed with MAC
194	frames, and are not included here, because they are no longer PHY related.
195	x.2.5 PSMT_CONTROL.request
196	_ 1
197	PSMT_CONTROL.request [Req_function {802.3-22.2.4.1}]
198	
199	Where Req_function is the assertion or clearing of bits in the {802.3-22.2.4}
200	Management functions reigisters. Bit definitions changed for 802.5 are listed in
201	section (ref) PHY Layer Definitions.
202	
203	The most important PSMT_CONTROL is Link_Status. We may wish to use this
204	as an indication to start the registration state. It may be instead of, or in
205	conjunction with, a timer.
206	x.2.6 PSMT_STATUS.indication
207	PSMT_STATUS.indication [Status_function {802.3-22.2.4.2}]
208	
209	Where Req_function is the reading of bits in the {802.3-22.2.4} Management
210	functions reigisters. Bit definitions changed for 802.5 are listed in section (ref)
211	PHY Layer Definitions.
212	9.a.2 Station-specific 100 Mbps Protocol Specification
213	(null set)
214	9.b.2 C-Port-specific 100 Mbps Protocol Specification
214	(null set)
213	(11111 501)

Framing (someplace, the IFG needs to be defined as at least 10 nibbles of Idles) **PHY Layer Definition Overview** Scope This physical layer (PHY) is divided into two sublayers: physical signaling components (PSC) and physical Medium components (PMC). This clause describes the operation of the PSC and the PMC. This clause replaces clause 5: Station sepcific components, and clause 7: Station attachment specificatins, (and clause 8: concentrato specifications ?), for 100 Mbps operation. Figure (ref) shows a comparison of the ISO model layers for 802.3 and 802.5

29/09/97

241	The 1	00 Mbps PHY is specified by incorporating portions of the ANSI/IEEE 802.3						
242	standard, by reference, with the modifications noted below. The PSC shall n							
243	requirement of 802.3 Clause 24: Physical coding sublayer (PCS) and physical medium							
244	attachment (PMA), type 100BASE-X. The PMC shall meet all requirements of 802.3							
245	Clause 25: Physical layer entity (PHY) and baseband medium, type 100BASE-TX.							
246								
247	These two clauses reference other portions of the 802.3 standard, notably Clause 22:							
248	Reconciliation sublayer and media independent interface, and clause 28: Physical Layer							
249 250	link signaling for 10 Mb/s and 100 Mb/s Auto-Negotiation on twisted-pair. Requirements placed by reference shall be met by the 100 Mbps PHY wherever applicable.							
250 251	placed by reference shall be met by the 100 Mops PHY wherever applicable.							
252	Dow	Do we want to include a version and date of the above? This would prevent future						
252			•	roy our ability to use the next				
253	-	ation of TX parts.	in this high also aest	toy our doning to use the next				
255	•	al exceptions						
255 256			ts in the auto negotiat	ion registers will be changed to reflect				
250 257		quirements of 802.5, as						
258	the re	quitements of 802.5, as	s selected by the selec	tor ricid.				
259	2. Т	he physical layer devic	e shall support Full D	uplex transmission.				
260		c exceptions	II III III	r · · · · · · · · · · · · · · · · · · ·				
261	-	-	ds to be specified as a	requirement. But where? I can't find				
262		· •	1 0	1				
262	any mention of full or half duplex in clauses 24 and/or 25. Change to 25.4.3							
263 264	Change to 25.4.5 Clause 25.4.3 is replaced by the following:							
265		Ciduse 25.4.5 is iep	faced by the following	5.				
265		25.4.3 Contact	Assignments					
267				sted pair (UTP) adopts the contact				
268				e contact assignments shown in [TP-				
269			l instead be depicted i					
270			FP MIC contact a					
	CONTACT	PHY without	PHY with	1				
	continer	internal crossover	internal crossover					
		MID SIGNAL	MDI SIGNAL					
	1							
	2							
	3	Transmit +	Receive+					
	4	Receive+	Transmit+					
	5	Receive-	Transmit-					
	6	Transmit-	Receive-					
	7							
	8			J				
271				ed pair (STP) adopts the contact				
272				re the contact assignments shall meet				
273				Table 15 - "Station port signal to				
274				nd the MIC_S shall meet the				
275		requirements of 7.2	.5.1 "MIC-S (STP me	dium interface connector)". The STP-				

MIC defined in [TP-PMD] 8.2.1 *shall be an acceptable alternative for the MIC_S.*

Change to Annex 28A:

The following 5 bit word is added to the selector field mappings in Table 28A-1:

V	W	Х	Y	Ζ	IEEE 802.5
---	---	---	---	---	------------

276

277

278 279

280

281		Change to Annexes 28B: Selecto	r base page definition, 28C: Next			
282	page message code field definitions.					
283	The technology field definitions in these annexes are replaced by the following.					
284						
285	28B.2 Technology ability field bit assignments					
286	(Check out how 802.9 did this. Since we are defining this for 802.5, it is not a					
287	change to the 802.3 standard, but I don't wish to copy all of clause 28 (or even					
288	all of Annex 28B) if I can help it.)					
289	The Technology bit field consists of bits D5 through D12, (A0-A8 respectively)					
290	in the IEEE 802.3 Selector Base Page. Table 28B-1 summarzies the bit					
291	assignments.					
292	Note that the order of the bits within the Technolgy Ability Field has no					
293	P3 relationship to the relative priority of the technologies.					
	A0		(10BaseT Half Duplex)			
	Bit	Technolgy	Notes			
	A1		(10BaseT Full Duplex)			
	A2	100Base-TX Half Duplex Capability				

A1		(10BaseT Full Duplex)
A2	100Base-TX Half Duplex Capability	
A3	100Base-TX Full Duplex Capability	
A4	100Base-T4 Capability	(ICS TX, National TX PHY cannot write this
		bit)
A5	Switched Port	?
A6	RESERVED for Shared Port	?
A7		?

294

295 296

(Requested) Changes to ANSI/IEEE Std 802.3, 1996, and its approved supplements, Clause 28

297

Table 28A-1 – Selector field value mappings

S4	S3	S2	S 1	S 0	Selector description
0	0	0	0	0	RESERVED for Future Augo-Negotiatioin
					Development
0	0	0	0	1	IEEE 802.3
0	0	0	1	0	IEEE 802.9
V	W	Х	Y	Z	IEEE 802.5
1	1	1	1	1	RESERVED for Future Auto-Negotiation
					Development

298	Glossary:
299	PCS Physical coding sublayer : the 802.3 layer equivalent to the PSC
300	PMA Physical Medium attachment: the 802.3 sublayer of the PHY responsible for interfacing
301	with the transmission medium, independent of the type of medium. The PMA and PMD together
302	are equivalent to the PMC.
303	PMD Physical Medium dependant: the 802.3 sublayer of the PHY responsible for interfacing to
304	a specific type of transmission medium. The PMA and PMD together are equivalent to the PMC.
305	FDX This term is used is used to indicate the <i>"Full-Duplex"</i> operation supported by the 802.5
306	TXI Access Protocol. The TXI Access Protocol is used to support the 100/16/4 Mbit/s "Dedicated
307	Token Ring" Station.
308	HDX This term is used is used to indicate the "Half-Duplex" operation supported by the 802.5
309	TKP Access Protocol. The TKP Access Protocol is used to support the 16/4 Mbit/s "Token
310	Passing" Token Ring Station. This protocol can be modified to support the 100 Mbit/s "Token
311	Passing" Station.
312	HFDX This term is used is used to indicate the "Half Full-Duplex" operation supported by the
313	modified 802.5 TXI Access Protocol. The HFDX Access Protocol is used to support 100 Mbit/s
314	"Token Passing" Station.
315	LFFDX This term is used is used to indicate the "Low Function Full-Duplex" operation supported
316	by the modified 802.5 TXI Access Protocol. The LFTXI Access Protocol is used to support the
317	100/16/4 Mbit/s "Low Function Dedicated Token Ring" Station.
318	The following terms are used to describe the protocol defined by the ISO/IEC 8802-5 Standard.
319	TKP Access Protocol This protocol is specified by the ISO/IEC 8802-5:1995 and its update:
320	ISO/IEC 8802-5:1997 REV (Revision) Standards. These Standards specify the original "Transmit
321	on Token Protocol".
322	TXI Access Protocol This protocol is defined in the ISO/IEC 8802-5:1997 Supplement to the
323	ISO/IEC 8802-5:1995 Standard titled "Dedicated Token Ring". This Supplement specifies the
324	"Transmit Immediate Protocol".
325	The following terms are used to describe the protocols which will be proposed as an update to the
326	ISO/IEC 8802-5.2 Revision to support 100 Mbit/s Station using "Token Passing".
327	HFDX Access Protocol This <i>shared</i> protocol is proposed to support the HSTR Splitter, HSTR
328	Station, and the 100/16/4 Switch.
329	LFTXI Access Protocol This <i>switched</i> protocol is proposed to support the Low Function HSTR
330	Station and the 100/16/4 Switch.

331	Annex XXA (informative)
332	Minimal PHY Design
333	Objective:
334	Provide information to allow implementers to design a minimum-function 100Mb/s
335	transceiver.
336	100BaseTX Functions required by 100Mb/s Token Ring:
337	1) MII Signals:
338	• TXD
339	• TX_EN
340	• TX_CLK
341	• RXD
342	• RX_ER
343	• RX_CLK
344	• RX_DV
345	• MDC
346	• MDIO
347	2) Abilities:
348	• 100Base-X Full Duplex
349	100BaseTX Functions optional for 100Mbps Token Ring:
350	(used if present)
351	1) Abilities:
352	Auto-Negotiation Ability
353	100BaseTX Functions not used by 100Mb/s Token Ring:
354	1) MII Signals:
355	• COL
356	• CRS
357	• TX_ER
358	2) Abilities:
359	• 100Base-T4
360	• 100Base-X Half Duplex
361	• 10 Mb/s Full or Half Duplex
362	• 100Base-T2 Full or Half Duplex
363	Preamble suppression
364	Remote Fault
365	• Extended (register set) capabilities.
366	