1394 Overview

Raj Paripatyaadar, ControlNet
1394 Objectives

- Digital Interface
- Physically Small
- Easy to Use
- Hot Pluggable
- Inexpensive
- Scalable Architecture
- Flexible Topology
- Fast
- Open Standard
Original 1394 Cable

- Two Pairs of 28 AWG Shielded Twisted Pair (STP) Signal Wires
- Two 22 AWG Power Wires
- Outer Shield
- 4.5 meter Maximum Link Length
- 6-pin Nintendo-like Connector
1394 Topology

- Contains Up to 64 Nodes per Bus
- Bridges Link the Buses Together
- Bus Can Fork into a Tree Structure
1394 Physical Addressing

- 64-bit Address
 - 48-bit offset
 - register access in node
 - 10-bit bus ID
 - 6-bit node ID
 - dynamically allocated
 - 3F broadcast

- 64K Nodes Max
 - Over bridged buses
Protocol Architecture

- PHY is Independent Silicon
- Link is Integrated into System’s Silicon
- Transaction Layer in Software or State Machine

- Transaction Layer
 - Asynchronous read, write & lock

- Link Layer
 - Packet Transmitter
 - Packet Receiver
 - Isochronous talk
 - Cycle Control and listen

- Physical Layer
 - Arbitration
 - Data Resync
 - Encode/Decode
 - Connection State
 - Connectors/Media
 - Signal Levels

- IEEE 1394 Physical Interface
Cycle Structure

- Isochronous Traffic is Handled in 125μs Slots
- Asynchronous Traffic Uses Remaining Bandwidth
- The Cycle Start Sent by the Cycle Master, the Root Node

Nominal cycle period = 125 msec ± 100 PPM
1394a

- Lower-cost 4-pin Cable
- PHY Link Interface in Normative Text
- Bus Arbitration Improvements
 - Fly-by and ack-accelerated arbitration
 - Fairness optimization
- Loop Detection and Correction
- Clean-up
IEEE 1394b

• Extended Distance
 – 100 Mbps using 100m EIA/TIA CAT 5 UTP
 – 400/800/1600 Mbps using 50µm Fiber

• Support for AC Coupled Media
 – UTP uses TP-PMD and 8B10B Coding

• Support for Extended Propagation Delay
 – Multiple 100m Links
1394b PHY

Link Interface

PLL

Rx Decoder and Timer

Link Arbitration & Control Logic

Tx Encoder

Port Interface Logic

Data

Control

Lreq

Iso

Reset

PHY Clock

0:7

0:1

TP

10 November, 1998

IEEE 802 Plenary Tutorial
1394 / Ethernet Differences

- PHY Addresses Are Dynamic
- Confirmed Delivery for Asynchronous Packets
- Isochronous Mode
- Notification of Node Connection / Disconnection
1394.1

- **Two Port Architecture**
 - since n portals can be built with 2 portal devices and an internal bus
- **Routes Asynchronous and Isochronous Traffic**
- **Physical Loops Permitted**
 - parsed into logical tree for routing
- **Virtual Node Address Mapping**
- **Bus Address Allocation Scheme Similar to Node Addressing**
Some 1394 Web Sites

- 1394 Trade Association
 - 1394ta.org (has links to related sites)
- IEEE P1394b
 - www.zayante.com/p1394b
- IEEE P1394.1
 - grouper.ieee.org/groups/1394/1
IETF IP/1394

- IPv4 over 1394 spec (RFC from IETF) is available
 - www.ietf.org/ids.by.wg/ip1394.html
- IP 1394 miniport driver interfacing to NDIS TCP/IP
Complete Protocol Stack

Application

WinSock 2 API

WS2 Service Provider

Transport Driver Interface (TDI)

TCP/IP

NDIS Ethernet Interface

ARP, IP, Multicast, Ethernet to 1394

IP/1394 Miniport

Private Interface

1394 P&P, async & sync streams

IP/1394 Drivers

Camera, VCR, Printer

IEEE 1394 Bus Class Driver

OHCI Port Driver

IEEE 1394 Hardware
Summary

- 1394-1995 began in 1986 and was approved in December, 1995
- 1394a began in 1995 and should be approved next month
- 1394b scheduled for balloting in 1999
- 1394.1 in first complete draft
NDIS IP/1394 Miniport

ARP
- Cache pseudo-Ethernet, EUI-64, IEEE 1394 address (16-bit node ID, 48-bit offset)

IP
- Map pseudo-Ethernet to EUI-64 to IEEE 1394 address
- Strip/add Ethernet headers

Multicast
- Allocate IEEE 1394 channel
- Advertise mapping of IEEE 1394 channel to IP multicast

10 November, 1998
IEEE 802 Plenary Tutorial
Current Issues (1)

- Virtual NODE_Ids
- Higher layer protocols and applications
- Routing table setup
- Congestion
- Virtual bus behavior
- Error and retry handling
Current Issues (2)

- Different time on different buses
- Isochronous time stamp adjustment
- Longer split timeout
- Reset notification
- Access to registers on other buses
- Packet size and speed
- Isochronous stream setup