CTR Mode for Encryption

Onn Haran – Passave
Olli-Pekka Hiironen – Nokia
Disclaimer

- This presentation is informative
- The described functionality should not be part of 802.3
How Cipher Block is Applied?

- When using a symmetric block code (like AES), the plaintext is divided into blocks (128-bit in AES case)
- The mathematical operations, in addition to encryption function, are called Block Cipher Mode of Operation
- Some modes of operation requires an Initialization Vector (IV), which is used in the initial step of encryption/decryption
Why Block Cipher Mode of Operation is Needed?

- Advantages of adding Block Cipher Mode of Operation are:
 - The same plaintext will be encrypted to a different ciphertext, at any invocation
 - Important when analyzing repeating patterns (DA, SA, Ethertype, IP headers, TCP headers, known packets like ICMP, ARP, etc…)
 - Helps in handling last block problem
 - Last block can be smaller than code block size
 - Impossible to perform packet replay
 - Increases encryption level
National Institute of Standards and Technology (NIST) recommends 5 block cipher modes of operation (publication 800-38A)

Two features are required:

- Maintaining packet length – Length of last block should be arbitrary
- Enabling parallel encryption - Encryption of a plaintext block shouldn’t depend on result from previous block

From these modes only Counter (CTR) mode supports both features

Additional mode Offset Codebook (OCB) was proposed for 802.11, but it is protected by patents
Frame Format – CTR mode

- **Packet [15:0]**
- **Packet [31:16]**
- **Packet [Length: (N-1)*16]**

Encryptor
- **Counter #1**
- **Cipher**
- **Encrypted Packet [15:0]**

Decryptor
- **Counter #1**
- **Cipher**
- **Original frame**

Ciphered frame
- **Counter #2**
- **Cipher**
- **Decoded frame**

- **Counter #N**
- **Cipher**
- **Decoded frame**

...
Counter Initialization Vector (IV)

- Counter Initialization Vector must be used only once (nonce) per a specific key
- The counter is based on PON clock
- The counter IV will be a concatenation of:
 - cycle_counter [32 bits]
 - (PON clock + 16)[32:5] – PON clock rounded to the closest 512nSec boundaries
 - N [7 bits] – Serial number of cipher block inside frame
Counter Initialization Vector (IV)

- 32-bit cycle_counter is incremented whenever PON clock wraps around
 - LSB of cycle_counter is transmitted in preamble
 - ONU resets cycle_counter when changing keys
 - OLT monitors changes in key number. When detected:
 - Counter is reset if LSB is 0
 - Counter is set to 32’h0000_0001 if LSB is 1