It would appear that the 0 VID scheme is not compatible with Port and Protocol VLANs, and perhaps this is not a problem, but some mention of the implications around multiple untagged VLANs on a port should be provided.

Suggested Remedy
Describe how the 0 VID scheme works in the presence (or mandatory non-presence) of Port and Protocol VLANs.

Response
REJECT. 11.2.3.1.7 says that a message for the 0 VID can only be sent if there is only one untagged VLAN, so there is no problem to explain.

Comment ID #2

Paul Congdon

Comment Type E

Comment Status A

It is not clear which two diagrams are being referred to here.

Suggested Remedy
Call out the specific diagrams.

Response
ACCEPT.

Comment ID #3

Panagiotis Saltsidis

Comment Type E

Comment Status A

It is not clear what the subscript index is about.

Suggested Remedy
Either erase or explain.

Response
ACCEPT IN PRINCIPLE. The footnote was supposed to be a trademark symbol.

Comment ID #4

Panagiotis Saltsidis

Comment Type ER

Comment Status A

As the note explains the registrar controls are realized by means of the contents of the Port Map parameters of static entries. The port map parameters of the static VLAN entries have been modified by this standard in order to include the New ignored and New propagated choices as well (8.8.2), and the contents of these are modified by means of the management operations on static filtering entries in 12.7 which should now include the new propagated choice as well.

Suggested Remedy
Delete the sentence "The choice between New ignored and New propagated choices is made statically by means of the management operations in Clause 12.9."

Response
ACCEPT IN PRINCIPLE. Comment #37 further modifies this note.
Comment 1

Comment Type: E
Comment Status: A
Comment ID: 11
Port: 12
Line: 38

Panagiotis Saltsidis
None entered

Comment: This configuration choice of whether a given port's participant operates as a Full participant or a New-only participant is mainly affecting the applicant and correspondingly the associated managed object should augment the current MRP applicant controls 12.9.2.2

Suggested Remedy: Insert this choice in the Set MRP Applicant Controls (12.9.2.2), replace the reference accordingly and delete 12.9.2.4 accordingly.

Response:
Response Status: C
Response ID: 7
Author: Panagiotis Saltsidis
None entered

Response: ACCEPT. See Issue 4.1 for general solution.

Comment 2

Comment Type: ER
Comment Status: A
Comment ID: 39
Port: 33
Line: 34

Panagiotis Saltsidis
None entered

Comment: This choice is configured by the static VLAN entries and should be managed in 12.7 as all other Registrar control entries.

Suggested Remedy: Replace the current reference with (12.7) and delete 12.9.2.3

Response:
Response Status: C
Response ID: 10
Author: Panagiotis Saltsidis
None entered

Response: ACCEPT. See Issue 4.1 for general solution.

Comment 3

Comment Type: ER
Comment Status: A
Comment ID: 39
Port: 33
Line: 7

Panagiotis Saltsidis
None entered

Comment: The term MAC Address Registration Entries is used for those FDB entries that are controlled the operation of MMRP. The sentence should refer to Dynamic Filtering Entries or plainly learned MAC Address entries.

Suggested Remedy: Replace "...learned MAC Address Registration Entries..." with "...learned MAC Address entries..." or with "... the Dynamic Filtering Entries..."

Response:
Response Status: C
Response ID: 1
Author: Panagiotis Saltsidis
None entered

Response: ACCEPT. "learned MAC Address entries"
The reference to MAP as a mechanism that would enable propagation between MVRP and MIRP participants is not correct. The MAP function for a given MRP application is enabling propagation of MRP related information between a set of peer MRP participants within the same application that are forming an "active" topology. In the described case, the MRP participants belong to different MRP applications. What we need instead is to translate attributes from one MRP application to another. (In any case, the MIRP participants on PIPs do not propagate the MIRP information further to other MIRP participants (PIPs are behaving in principle as independent end-stations from an I-SID registration perspective)).

Suggested Remedy
Delete item b) and replace with "b) Implement a MVRP to MIRP attributes translation function as indicated in 39.2.1.2"

Response
ACCEPT.

It is not clear how MIRPDUs received PNPs on a B-component will reach the MIRP participant that is attached to one PNP as the connectivity between any other PNP port and the PNP port to which the MIRP Participant is attached to is not given.

Suggested Remedy
Either clarify or enable non-CBP MIRP participants only on the management port.

Response
ACCEPT IN PRINCIPLE. See Issue 4.2 for resolution.
As argued earlier, the MIRP participants on PIPs do not propagate the MIRP information further to other MIRP participants (PIPs are behaving in principle as independent end-stations from an I-SID registration perspective)). In addition the problems indicated in NOTE 1 of 39.2.1.6 are mainly due to the fact that the appropriate context for MIRP protocol propagation is the VLAN context and not the Base Spanning Tree context as indicated in the current draft.

Suggested Remedy

Delete the current 39.2.1.4 and replace with "MIRP, as defined in this standard, operates within the set of VLAN Contexts that correspond to the B-VLANs that are supported by the Provider Backbone Bridge Network. The MAP Context Identifier used to identify a VLAN Context shall be equal to the VID used to identify the corresponding B-VLAN.

The set of Ports of a B-component defined to be part of the active topology for a given VLAN Context shall be equal to the management port plus the set of CBPs on the B-component for which the following are true:

a) The CBP is a member of the Member set (8.8.9) for that VLAN; and
b) The CBP is one of the Ports of the B-component that are part of the active topology for the spanning tree that supports that VLAN."

Insert a new subclause 39.2.1.5 and renumber the subsequent subclauses accordingly

"39.2.1.5 Context identification in MIRP Implementations of MIRP in B-components apply the following rules to received MIRPDUs:

MIRP frames with no VLAN classification (such as the MIRDUs received on CBPs from the LAN) are classified according to the VID as selected via managed variables [see item (k) in 12.16.1.1.3], which in addition set the destination_address of the received MIRPDU:

a) The VID of the MIRP B-VID [item (c) in 12.16.1.2.2] while the destination_address is set to the Nearest Customer Bridge group address (Table 8-1).

b) The VID a Backbone VLAN Identifier (B-VID) from the CBP's Backbone Service Instance table (6.11) while the destination_address is set to the Nearest Customer Bridge group address (Table 8-1).

c) The VID of a Backbone VLAN Identifier (B-VID) from that table while the destination_address is set to a Default Backbone Destination from the CBP's Backbone Service Instance table (6.11).

For both case (b) and case (c), above the Backbone Service Instance table entry used is the one corresponding to one or more of the MIRP attributes (l-SIDs) in the MIRPDU. This is the entry whose Local-SID field matches the attributes, or if the Local-SID field is not implemented, the entry whose Backbone-SID matches the attributes. The CBP PVID is used for the vlan_identifier if no MIRP B-VID is specified for case (a), or if no Backbone VLAN Identifier field is implemented for case (b) or case (c).

If the configured choice for addressing, the contents of the Backbone Service Instance table, and the MIRP Messages to be transmitted yield multiple (destination_address, vlan_identifier) pairs, then the CBP MIRP Participant shall transmit at least one MIRPDU for each distinct pair.

NOTE—The network administrator can use the destination_address and vlan_identifier configuration choice to optimize either for the fewest transmitted MIRPDUs by using case (a), for the fewest unnecessarily addressed I-components by using case (c), or for a balance of these two conflicting optimizations by using case (b).

VLAN-tagged MIRP frames (such as the MIRPDUs received on the management port or on CBPs from the PBBN) are classified according to the VID carried in the tag header.

The VLAN classification thus associated with a received MIRP frame establishes the VLAN Context for the received PDU, and identifies the MRP Participant instance to which the PDU is directed.

MIRPDUs transmitted by MRP Participants are VLAN classified according to the VLAN Context associated with that Participant. MRP Participants in B-components apply the same rules that are defined for the transmission Port. Therefore d) MIRPDUs are transmitted to a CBP from the management port only if the value of the Member Set for the CBP for the VLAN concerned indicates that the VLAN is registered on that CBP.

e) MIRPDUs to or from the management port are transmitted as VLAN-tagged frames while MIRPDUs transmitted by the CBP towards the LAN are transmitted as untagged. The destination_address on untagged MIRPDUs is set to the Nearest Customer Bridge group address (Table 8-1). Where VLAN-tagged frames are transmitted, the vlan_identifier carries the VLAN Context Identifier value."

In addition 39.2.1.6 MIRP application addressing in a B-component (now renumbered to 39.2.1.7) should be replaced with the following:

"The source MAC address for an MIRPDU is the MAC address of the Port from which it is transmitted while the destination_address and vlan_identifier should be as described in 39.2.1.4."

Response

ACCEPT IN PRINCIPLE. See Issue 4.2 for resolution.

As explained earlier, the mechanism for "propagating" MRP information between MRP participants that belong to different MRP applications cannot be MAP.

Suggested Remedy

Consider replacing the sentence with "When any MVRP declaration marked as "new" is received on a given VIP, as a result of receiving a "new" request initiated from the MRP Application on the associated (39.2.1.2), any entries in the I-component's filtering database for that Port and for the VLANs corresponding to the attribute value in the MAD_Join primitive are removed."
Cl 11 SC 11.2.3.1.7 P11 L53 # 17
Jessy V. Rouyer None entered
Comment Type ER Comment Status A
"in place of the that VLAN ID"
SuggestedRemedy
Replace "the that" with "that"
Response Response Status C
ACCEPT.

Cl 11 SC 11.2.6 P12 L41 # 18
Jessy V. Rouyer None entered
Comment Type ER Comment Status A
"Stack VLAN Registration Entries"
SuggestedRemedy
Replace "Stack" with "Static"
Response Response Status C
ACCEPT.

Cl 39 SC 39.2.1.12 P36 L4 # 19
Jessy V. Rouyer None entered
Comment Type ER Comment Status A
"S-IDs"
SuggestedRemedy
Replace with "S-VIDs"
Response Response Status C
ACCEPT.

Cl 39 SC 39.2.1.12 P38 L18 # 20
Jessy V. Rouyer None entered
Comment Type ER Comment Status A
"Provider Backbone Network"
SuggestedRemedy
Replace with "Provider Backbone Bridged Network"
Response Response Status C
ACCEPT.

Cl 39 SC 39.2.1.12 P40 L37 # 21
Jessy V. Rouyer None entered
Comment Type ER Comment Status A
The following sentence "The model in Figure 39-2 is therefore used for the transmission and reception of MIRPDUs, and the model in Figure 39-3 is used for controlling the partitioning of MIRP messages into transmitted MIRPDUs and the selection of B-VLANs and destination MAC addresses for those MIRPDUs." makes it sound like the two models are used in a compliant implementation contrary to the "Alternate MIRP model" title.
SuggestedRemedy
Consider at least prefixing the second "used" with "alternatively ".
Response Response Status U
ACCEPT IN PRINCIPLE. See Issue 4.2 for resolution.

Cl A SC A.21 P40 L38 # 22
Jessy V. Rouyer None entered
Comment Type ER Comment Status A
"support the an"
SuggestedRemedy
Remove "the"
Response Response Status C
ACCEPT.

Cl 10 SC 10.6 P8 L9 # 23
Don Fedyk None entered
Comment Type E Comment Status A
"but not the LeaveAll..." is awkward
SuggestedRemedy
replace with "not implementing the LeaveAll...."
Response Response Status C
ACCEPT.
MVRPDUs should be MIRPDUs?

SuggestedRemedy
It looks like a typo but needs explanation if it is not.

Response
ACCEPT. Should be MIRPDU.

MIRPDUs transmitted on a PIP have no VLAN is true. But as they go to the MIRP participant on the B-Component they are propagated through the backbone with a VLAN none the less.

SuggestedRemedy
Explain the full propagation of the MIRPDUs so it can properly be compared with the alternate MIRP model.

Response
ACCEPT. This is (and will be further) explained in 39.3.1.4, MAP Context.

It is not clear as to how the name "Multiple I-SID Registration Protocol" is related to the scope of this project. We are not Registering I-SID. We are flushing MAC addresses based on the binding information contained in VIP. Did we change our scope but forgot to change the name of this project?

SuggestedRemedy
MIRP is misleading. Please change the name.

Response
ACCEPT IN PRINCIPLE. Will add a NOTE to Clause 1.1:

NOTE--MIRP can only trigger the flushing of learned MAC address information; it does not propagate the registration of I-SIDs. The name Multiple I-SID Registration Protocol is chosen because MIRP is a Multiple Registration Protocol (MRP) application, and can be extended in future to perform I-SID registrations.
This sentence is long and dense in contents. Please split it.

Please split this sentence.

ACCEPT IN PRINCIPLE. Comment #32 will change this paragraph, also.

What real world problem are we addressing here? Are we focussing on UDP packets? Even if UDP connectivity as in IPTV is broken, IPTV protocols (IGMP, join, query, etc.) can re-initiate the connection and thereby solve the stale MAC address problem. TCP is bi-directional, so stale MAC address problem will not occur. Are we also assuming no end-to-end CCM, because periodic CCM can also solve the stale MAC address problem?

Please add a clarifying paragraph.

REJECT. Practical experience has shown that mechanisms for flushing learned MAC address information are necessary, hence the TCN in the spanning tree protocols and the New message in MVRP and MIRP. Clause 39 is too narrow a context for a general discussion of the need for MAC address flushing. At present, 13.17 gives the best description of MAC address flushing.

Please illustrate this example of dual homing. "For example, one…"

Please add illustration and briefly explain it.

REJECT. Adding more non-normative text is not appropriate at this stage of the development of the document.

A VIP is a bridge port needs to be changed. A VIP is virtual instance port on a PIP.

Please delete this line: "A VIP is a bridge port." and modify the next line appropriately.

REJECT. A VIP is, in fact, a particular kind of Bridge Port. See 802.1Q-REV D1.0 Clause 3.175.
Please move the tag "Management Port" close to the port. It is dangling far away from the port in the figure.

Suggested Remedy
Pls see comment

ACCEPT IN PRINCIPLE. See Comment #11. The length of the right-hand leg will be shortened.

It is not clear whether model in Fig 39-3 can be used as is (even with the drawback of communicating with MIRP PDUs), or it is always to be used with model in Fig 39-2.

Being proposed as an alternate model, it will help to clarify when & if the model of Fig 39-3 can be run as is w/o incorporating any aspects of model in Fig 39-2.

ACCEPT IN PRINCIPLE. See Issue 4.2 for resolution.

The fact that sending VLAN 0 MVRP messages is incompatible with current implementations is a problem.

Limit the use of VLAN 0 MVRP messages to VIPs, where there is no existing solution to the problem of differing PVIDs and New-only participants.

ACCEPT.