
A more Robust Tree:
Active Topology Maintenance in
Reconfiguring Bridged Local Area
Networks (STP+)
Mick Seaman, 3Com Corporation

March 6, 1996

1 Summary
This note describes an  improvement (called STP+ in this
document) to the standard basic Spanning Tree Algorithm
and Protocol (STP) for configuring bridged local area
networks. This improvement reduces the impact  that
topology changes in one part of the network may have on
the service availability in other parts.

In STP, information propagation races can cause
previously Forwarding bridge ports to be put into the
Blocking state - even if the  network topology local to the
bridges turns out to be the same after the new information
has fully propagated. After a port is made Blocking twice
Forwarding Delay time has to elapse before it can be made
Forwarding again. This means there is  an unintended and
unnecessary denial of service - typically for 30 seconds.

Section 3 provides examples.

It is possible to avoid the problem by careful arrangement
of STP parameters - the priorities of Bridges and Bridge
Ports, and the Costs associated with Ports. However this
procedure is tedious, not widely understood, and  is not
‘plug and play’.

STP+ is based on the observation that reversion to a
previous active topology differs from adoption of a new
one - so long as no frames have been forwarded on the new
active topology. For a brief interval after the its first receipt
of information to transition a Forwarding port to Blocking,
any bridge can be sure (to within basic STP probabilities)
that no other bridge has yet transitioned a Blocking port to
Forwarding. STP+ identifies this interval with a new
"Forgetting" state. The port does not forward frames or
learn while in the Forgetting state. The Forgetting state is
thus identical with Blocking state so far as data traffic is
concerned. However, if new information is received which
would cause the port to be made Forwarding, a transition to
the Forwarding state can take effect immediately. This
limits periods of accidental service denial to the duration of
the race condition, which is typically very brief.

Section 5 describes the calculation of the duration of the
Forgetting state. Section 6 describes the necessary changes
to STP.

STP+ requires no additional administrative procedures.
Bridges (switches) implementing the suggested
improvement are fully compatible and interoperable with
802.1D standard bridges, and can be intermixed freely
without topology restrictions. Since there are no changes to
BPDUs or basic spanning tree procedures, they should be
compatible with all existing bridges that are believed to be

.1D compatible - not just those which follow the strict letter
of the standard.

Please note: My intention in making information on this
Spanning Tree improvement available is to ascertain
whether there is interest  in P802 in its standardization as
an enhancement to 802.1D. I do not wish to imply that it is
currently free of patent restrictions. However it is not my
personal intention that such patent filings as I am aware of
obstruct its potential standardization and subsequent
general availability. Mick.

2 Background
This section provides some background for those less
familiar with STP and its development.

Media Access Control (MAC) Bridges may be used to
connect individual Local Area Networks (LANs) to form a
Bridged Local Area Network. These Bridges maintain a
simply connected active topology to prevent the
duplication or misordering of frames transmitted between
stations attached to the Bridged Local Area Network. IEEE
Std 802.1D-1990 [1] describes the operation of MAC
Bridges in general and the operation of a Spanning Tree
Algorithm and Protocol which is used to maintain a fully
and simply connected active topology despite the
unpredictable addition and removal of Bridges to and from
the network.

A Bridge connects to LANs through its Ports. The
Spanning Tree Algorithm maintains loop free connectivity
of the Bridged Local Area Network by selecting some
Bridge Ports to forward frames, and other to block or not
forward. Since incorrect selection of a Port to forward
frames could lead to loops in the network, which in turn
could lead to network overload or protocol malfunction,
the Algorithm takes care to avoid such errors. The
Algorithm is distributed and its design recognizes
propagation delays between Bridges. If information is
received by any Bridge that suggests that one of its Ports
should block, the transition to a blocking state is actioned
immediately, whereas a transition to a forwarding state is
delayed, typically by 30 seconds. Thus even temporary
receipt of information that indicates blocking could cause a
loss of service to stations attached to the network for this
period.

The original published description of the Spanning Tree
Algorithm [2] (Perlman, 1985) included a waiting period
following the receipt of information that would cause a
bridge port to block. In this PRE_BACKUP state the port
continues to forward and learn from data traffic, while new
protocol information can cause an immediate reversion to
the FORWARDING state. Thus, in this version of the
algorithm, protocol information propagation races do not
lead to service denials. However, I know of no
implementation of the Algorithm including this
mechanism. It has the disadvantages of (a) delaying
detection of a genuine loop, which might be caused by the
addition of a new network component (Bridge, LAN
repeater, or physical link) to the network and (b)



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 2 - 3/6/96

necessitating a longer period for transition from a blocking
state to a forwarding state - in the event that removal or
failure of a component requires spanning tree
reconfiguration.

The possibility of a temporary ‘glitch’ in STP propagation,
and subsequent denial of service for periods of 30 seconds
or so is a recognized problem. It is possible to arrange the
parameters of the Spanning Tree Algorithm - the priorities
of Bridges and Bridge Ports, and the Costs associated with
Ports and connections - to avoid or minimize ‘glitches’.
However this procedure is tedious, not widely understood,
detracts from the otherwise ‘plug and play’ attributes of the
Algorithm and of Bridged Local Area Networks in general,
and requires coordination of the administration of the entire
network. For this latter reason it is often recommended that
the advantages of automatic configuration and loop
detection, which the Algorithm provides, be dispensed
with when connecting remotely bridged sites or at
administrative boundaries in extensive bridged LANs. In
these cases it is deemed more important that configuration
changes at one site not cause ‘glitches’ and consequent loss
of service for a longer period at another site or in another
part of the network.

The aim of the enhancement to STP (STP+) described in
this note is to extend the applicability and acceptability of
autoconfiguring spanning trees as part of increasing the
practical use of plug and play solutions.

STP+ does not include a waiting period prior to transition
of a Bridge Port into a blocking state. Rather it provides for
an improvement to the basic Spanning Tree Algorithm and
Protocol to include recognition of an initial period in
blocking state during which an immediate return to
forwarding is permissible without looping, duplication or
misordering of frames. IEEE Std 802.1D-1990 [1]
Appendix B describes the calculation method for Spanning
Tree Algorithm timer parameters. This note uses and builds
on that description (in Section 4).

3 Reconfiguration Examples
Figure 1-a provides a simple example of a situation in
which an unnecessary denial of service can occur. The
priority order of the bridges is B1 (highest) thru B5
(lowest). All the port Path Costs are identical. Initially B1
is the Root of the spanning tree, and the forwarding path
between endstations X (on LAN L2) and Y (on L4) is
through B5. The reconfiguration begins with B1 being
powered off, and ends with B2 as the new Root. In the final
configuration the forwarding path between X and Y is once
more through B5. What happens during reconfiguration
depends on the precise order of events as determined by
processing and transmission delays, and the accuracy of
timers. One possible sequence of events is illustrated, with

approximate timings based on the default parameters of
[1].

Figure 1-a  A hazardous configuration

 1:  0.0: B1 power off

 2: 18.3: B4 timeout B1 as Root
             transmit B4 as Root on L3,L4

 3: 18.4: B3 reply B1 is Root on L3

 4: 18.6: B5 reply B1 is Root on L4

 5: 19.1: B2 timeout B1 as Root
             transmit B2 as Root on L1,L2
             B3,B5 ignore

 6: 19.2: B5 timeout B1 as Root
             transmit B5 as Root on L2
             transmit held for L4
             B3 ignores

 7: 19.3: B2 process B5’s BPDU from L2
             reply B2 as Root held on L2

 8: 19.4: B3 timeout B1 as Root
             transmit B3 as Root on L3,L4

 9: 19.5: B4 process B3’s BPDU from L3
             accept B3 as Root
             transmit B3 as Root on L4

10: 19.6: B5 process B3’s BPDU from L2
             accept B3 as Root
             transmit B3 as Root on L4

11: 19.7: B5 process B4’s BPDU from L4
             accept B3 Root,B4 Designated
             make port to L4 Blocking

Figure 1-b XY connectivity lost

12: 19.8: B4 process B5’s BPDU from L4
             reply B4 as Designated held

13: 20.1: B2 reply B2 as Root on L2
             (previously held)

B1

B3 B5

B4

B2 X

Y

L1

L2

L3

L4

Forwarding Ports

Non-Forwarding Ports
(Blocking, Listening or Learning)

B1

B3 B5

B4

B2 X

Y

L1

L2

L3

L4

1

2

3 4

5

6

7

8

9

10 11

Listening

Blocking



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 3 - 3/6/96

14: 20.2: B3 process B2’s BPDU from L2
             accept B2 as Root
             transmit held for L3

15: 20.3: B5 process B2’s BPDU from L2
             accept B2 as Root
             transmit held for L4
             make port to L4 Listening

16: 20.4: B3 transmit B2 as Root on L3
             (previously held)

17: 20.5: B4 process B3’s BPDU from L3
             accept B2 as Root
             transmit B2 as Root on L4

18: 20.6: B5 transmit B2 as Root on L4
             (previously held)

19: 20.7: B5 process B4’s BPDU from L4
             reply B5 as Designated held

20: 20.8: B4 process B5’s BPDU from L4
             accept B5 as Designated
             make port to L4 Blocking

Figure 1-c XY connectivity recovering

21: 21.1: B2 transmit B2 as Root on L1,L2
             (Hello Timer Expiry)

22: 21.2: B3 process B2’s BPDU from L2
             transmit held for L3

22: 21.3: B5 process B2’s BPDU from L2
             transmit held for L4

23: 21.4: B3 transmit B2 as Root on L3
             (previously held)

24: 21.5: B4 process B3’s BPDU from L3

25: 21.6: B5 transmit B2 as Root on L4
             (previously held)

26: 21.5: B4 process B5’s BPDU from L4

27: 23.1: B2 transmit B2 as Root on L1,L2
             (Hello Timer Expiry)

28: 23.2: B3 process B2’s BPDU from L2
             transmit B2 as Root on L3

29: 23.3: B5 process B2’s BPDU from L2
             transmit B2 AS Root on L4

30: 23.5: B4 process B3’s BPDU from L3

31: 23.5: B4 process B5’s BPDU from L4

Events 27 thru 31 repeat at 2 second
intervals until ..

97: 50.3: B5 make port to L4 Forwarding

Connectivity between X and Y was lost for 30 seconds.

B1

B3 B5

B4

B2 X

Y

L1

L2

L3

L4 Blocking

Listening

13

14 15

17

16 18 19

20

The priority order of the bridges could have been
rearranged to avoid the possibility of temporary denials of
service. Figure 2-a gives a nonhazardous alternative.

Figure 2-a Hazard-free configuration

B4 will always be a better Designated Bridge for L4 no
matter how many bridges are attempting to establish the
new topology.

In general, a configuration is hazard free if it meets the
following conditions. Given any bridge with two or more
ports that will be forwarding once the active topology has
stabilized, and taking all possible subsets of the bridges in
the network, all the spanning trees computed with these
subsets make those ports forwarding. For example, in
Figure 2-a, both ports of B4 are forwarding if all the
bridges other than B1 are removed from the network, or if
all other than B3 and B5 are removed, or indeed if any of
B1 thru B5 are included.

Figure 2-b Alternate hazard-free configuration

The configuration shown in Figure 2-b is also hazard free,
though B5’s port to L3 can block (consider bridges B3, B4,
B5).

B1

B3 B4

B5

B2 X

Y

L1

L2

L3

L4

Forwarding Ports

Non-Forwarding Ports
(Blocking, Listening or Learning)

B1

B4 B3

B5

B2 X

Y

L1

L2

L3

L4

Forwarding Ports

Non-Forwarding Ports
(Blocking, Listening or Learning)



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 4 - 3/6/96

Not all configurations can be made hazard free by simply
changing bridge priorities. In some Path Costs also need to
be set. See, for example, figure 3-a.

Figure 3-a Hazard elimination by priority and cost
assignments

4 Example reconfiguration with STP+
This section uses the first example of Section 3 to show
how service denials are minimized by the STP+
enhancement.

The sequence of events previously described remains the
same, with two exceptions. At event 11, B5’s port to L4 is
put into the Forgetting state:
11: 19.7: B5 process B4’s BPDU from L4
             accept B3 Root,B4 Designated
             make port to L4 Forgetting

And at event 15, it reverts directly to the Forwarding state:
15: 20.3: B5 process B2’s BPDU from L2
             accept B2 as Root
             transmit held for L4
             make port to L4 Listening

So the service interruption lasts for only 0.6 second instead
of a full 30 seconds, keeping it within the retransmission
time limits of almost all higher layer protocols.

5 Calculating the Forgetting Delay
Clause B3.8.2 of IEEE Std 802.1D-1990 [1] describes the
calculation of the delay necessary before a bridge adopts a
new active topology, i.e. starts forwarding frames on a port
which was previously blocking. This delay ensures that
there are no longer any frames in the network that were
being forwarded on the previous active topology. It is
calculated for a worst case scenario where bridges
maximally far apart in the network adopt a new active
topology following removal of the Root bridge from the
network:

2 x fwd_d >= msg_ao + msg_prop + bt_d + life

where:

B2B1 B4B3

B1,B2,B3,B4 have highest priority, others not relevant

10 10

10 10

10 10

10 10 10 10

10 10

10 10

10 10

10 10

4040 4040

Relative path costs associated with each port are
shown  where relevant

fwd_d is the STP parameter Forward Delay, and 2 x
Forward Delay has to elapse before the port is
made forwarding

msg_ao is the maximum Message Age overestimate, i.e.
the maximum overestimate of the age of STP
information by any bridge in the network

msg_prop is the maximum Message propagation time
between bridges in the network

bt_d is the maximum bridge transit delay, the time taken
for a data frame to be forwarded through a bridge

life is the maximum frame lifetime in the network of
bridges

The STP+ improvement is based on the observation that
reverting to the prior active topology is different to
adopting a new topology. A bridge can  revert immediately
to the prior topology if it can be sure (to within the
probabilities used by the basic algorithm) that there are no
frames in the network that were or are being forwarded on
a newer active topology, i.e. that the new topology (or at
least one that would require a difference in the forwarding
state of the local bridge’s ports) has not been adopted by
any other bridge.

Using the worst case described in [1] B3.8.2: msg_ao is the
time difference between two Bridges in the network
recognizing the need for a new active topology, and
msg_prop is the time taken for new protocol information
from the later of the pair to recognize the new topology to
reach the other. This permits the later bridge to be sure (on
recognizing the new topology) that the earlier still has a
period of bt_d + life (or 2 x fwd_d - (msg_ao + msg_prop))
to run before it attempts to use the new active topology. So
this later bridge can transition a port directly back to
forwarding at any time during this period without
increasing the risk of looping frames.

For the parameters derived in [1] Appendix B and used in
B3.8.2:

fwd_d = 15 seconds
msg_ao = 6 seconds
msg_prop = 14 seconds
bt_d = 1 second
life = 7.5 seconds

leaving an interval of  8.5 seconds in which direct reversion
is permitted.

A practical approach might relate the Forgetting Delay to
the hello time. It is not necessary to be precise about the
Forgetting Delay and I would suggest that it be in the range
one to two hello times. This is somewhat less than the
upper bound calculate but should deal with protocol
information races in almost all practical situations.

It should be noted that the above reasoning makes the
normal simplifying assumption that a single event - the
addition or failure of a bridge, link, repeater, or power
source - has caused the network to reconfigure. STP does
not guarantee the maintenance of a loop free topology in
the general case of a set of events spaced over time. In



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 5 - 3/6/96

particular the injection of continuously improving protocol
information into the network over the course of a
reconfiguration could cause loops to develop with some
probability depending on the precise behavior of the bridge
implementations. However, the single event assumption is
believed to cover all practical cases with the exception of

deliberate denial of service attacks or faulty
implementation.  I don’t know of any attempts to deploy
STP on such a scale that it would be a normal occurence for
two bridges to be independently failing or powering up
within a 60 second window. In this respect the scaling
pretensions of STP are considerably less than those of
major router protocols.

6 Changes to .1D
This section describes the major changes to .1D to
introduce the Forgetting State of STP+. In practice I
believe it would be best to make this implementation
optional, at least for some transition period. For the sake of
clarity I have left out such considerations.

Figure 4-3 of 802.1D is changed to add the Forgetting
State.

Section 4.4 is updated, and  a new Section 4.4.5 Forgetting
inserted before the existing 4.4.5 Disabled.

A new Section 4.5.6.4 Forgetting Timer is added
specifying a timer per port with a timeout value of twice
Hello Time (4.5.3.5), i.e. twice the value being used by the
current Root.

Update sections 4.6 and 4.8 to correspond to the code
changes following.

Add the forgetting state capability to the pICS as an
optional item.

Disabled

ListeningBlocking

Learning

ForwardingForgetting

(1)

(2)

(3)

(4)

(5)

(6)

(1,2)(1)

(1,2)

(1,2) (1,2)
(5)

(3)

(4)

(4)

(1) Port enabled, by management or initialization
(2) Port disabled, by management or failure
(3) Algorithm selects as Designated or Root Port
(4) Algorithm selects as not Designated or Root Port
(5) Protocol timer expiry (Forwarding Timer)
(6) Protocol timer expiry (Forgettiing Timer)

(2)



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 6 - 3/6/96

/**************************************************************************

* STP+ Code Changes

* NO WARRANTY IMPLICIT OR IMPLIED AS TO ACCURACY OR COMPLETENESS

**************************************************************************/

/**************************************************************************
* DEFINED CONSTANTS
**************************************************************************/

/** port states **/

#defined Disabled   0                                 /* (4.4.6) */
#defined Listening  1                                 /* (4.4.2) */
#defined Learning   2                                 /* (4.4.3) */
#defined Forwarding 3                                 /* (4.4.4) */
#defined Blocking   4                                 /* (4.4.1) */
#defined Forgetting 5                                 /* (4.4.5) */

/**************************************************************************
* STATIC STORAGE ALLOCATION
**************************************************************************/

Timer forgetting_timer[All_ports];

/**************************************************************************
* CODE
**************************************************************************/

make_forwarding(port_no)                                   /* (4.6.12) */
Int port_no;

{
   if (port_info[port_no].state == Blocking)
   {

      set_port_state(port_no, Listening);

      start_forward_delay_timer(port_no);

   }

   else if (port_info[port_no].state == Forgetting)
   {

      set_port_state(port_no, Forwarding);

      stop_forgetting_timer(port_no);

   }

}

make_blocking(port_no)
Int port_no;

{

   switch (port_info[port_no].state)
   {

      case Disabled: break;

      case Listening:
           topology_change_detection();
           port_info[port_no].state = Blocking;
           break;

      case Learning:
           port_info[port_no].state = Blocking;
           break;

      case Forwarding:

           start_forgetting_timer(port_no);
           port_info[port_no].state = Forgetting;
           break;

      case Blocking: break;

      case Forgetting: break;

      default: break;

   }
}



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 7 - 3/6/96

forgetting_timer_expiry(port_no)    /* (4.7.9) */
Int port_no;
{
   set_port_state(port_no, Blocking);
}

initialize_port(port_no)
Int port_no;
{
    become_designated_port(port_no);                     /* (4.8.1.4.1)  */

    set_port_state(port_no, Blocking);                   /* (4.8.1.4.2)  */

    port_info[port_no].topology_change_acknowledge = False;

                                                         /* (4.8.1.4.3)  */

    port_info[port_no].config_pending = False;           /* (4.8.1.4.4)  */

    stop_message_age_timer(port_no);                     /* (4.8.1.4.5)  */

    stop_forward_delay_timer(port_no);                   /* (4.8.1.4.6)  */

    stop_hold_timer(port_no);                            /* (4.8.1.4.7)  */

    stop_forgetting_timer(port_no);                      /* (4.8.1.4.8)  */

}

disable_port(port_no)
Int port_no;
{
   Boolean root;

   root = root_bridge();

   become_designated_port(port_no);                       /* (4.8.3.1)   */

   set_port_state(port_no, Disabled)                      /* (4.8.3.2)   */

   port_info[port_no].topology_change_acknowledge = False;/* (4.8.3.3)   */

   port_info[port_no].config_pending = False;             /* (4.8.3.4)   */

   stop_message_timer(port_no);                           /* (4.8.3.5)   */

   stop_forward_delay_timer(port_no);                     /* (4.8.3.6)   */

   stop_forgetting_timer(port_no);                        /* (4.8.3.6)   */

   configuration_update();

   port_state_selection();                                /* (4.8.3.7)   */

   if ((root_bridge()) && (!root))                        /* (4.8.3.8)   */

   {

      bridge_info.max_age = bridge_info.bridge_max_age    /* (4.8.3.8.1) */
      bridge_info. = bridge_info.bridge
      bridge_info. = bridge_info.bridge

      topology_change_detection();                        /* (4.8.3.8.2) */

      stop_tcn_timer();                                   /* (4.8.3.8.3) */

      config_bpdu_generation();                           /* (4.8.3.8.4) */

      start_hello_timer();

   }

}



Active Topology Maintenance in Reconfiguring Bridged Local Area Networks

Mick Seaman, 3Com Corporation - 8 - 3/6/96

/** pseudo-implementation-specific timer running support **/

tick()
{
   Int port_no;

   if (hello_timer_expired())
   {  hello_timer_expiry();
   }

   if (tcn_timer_expired())
   {  hello_timer_expiry();
   }

   if (topology_change_timer_expired())
   {  topology_change_timer_expiry();
   }

   for (port_no = One; port_no <= No_of_ports; port_no++)
   {

      if (forward_delay_timer_expired(port_no))
      {  forward_delay_timer_expiry(port_no);
      }

      if (message_age_timer_expired(port_no))
      {  message_age_timer_expiry(port_no);
      }

      if hold_timer_expired(port_no))
      {  hold_timer_expiry(port_no);
      }

      if forgetting_timer_expired(port_no))
      {  forgetting_timer_expiry(port_no);
      }
   }

}

/* where */

start_forgetting_timer(port_no)
Int port_no;
{  forgetting_timer.value = (Time) Zero;
   forgetting_timer.active = True;
}

stop_forgetting_timer(port_no)
Int port_no;
{  forgetting_timer.active = False;

}

Boolean forgetting_timer_expired(port_no)
Int port_no;
{  if (forgetting_timer[port_no].active &&
       (++forgetting_timer[port_no].value >= (2*bridge_info.hello_time))
   {   forgetting_timer[port_no].active = False;
       return(true);
   }
}


