
Mick Seaman 1

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

State Machines for Rapid Reconfiguration
Mick Seaman

This note specifies the Rapid Spanning Tree Protocol proposed for P802.1w using the state machine
formalism used for P802.3ad. This description is a straight forward development and completion of the state
machines discussed at the York, September ‘99 802.1 interim meeting, though a revised layout may make
these appear unfamiliar. It assumes that the reader is familiar with the original specification of the Spanning
Tree Algorithm and Protocol, with the prior papers on Rapid Reconfiguration circulated to 802.1, and with
the state machine methodology of 802.3 (modified to use C-like syntax in this note).

The operation of each bridge port is represented by two state machines:

a) The Port Timers State Machine
b) The Port Transition State Machine

The process of BPDU reception and BPDU transmission are also candidates for state machine description.
They interact with the above machines by setting flag variables (in the case of reception) or resetting them
(on transmission of an appropriate BPDU). The transmission process is responsible for its own rate limiting:
a limit of 3 transmissions in any two second period is suggested.

The operation of the bridge as a whole is represented by the interaction between Bridge Ports specified, and
by parameters of the bridge stored in ‘Port 0’. This removes the need for any ‘per Bridge’ specification
elements, and helps ensure the minimum dependencies between bridge ports. This in turn supports the
development of implementations that scale well with increasing numbers of bridge ports.

This shift of focus to ‘per port operation’ is supported by underlying technical changes from the legacy
algorithm:

a) Transmission of Configuration BPDUS is prompted by:
1) Changes to the information that a Designated Port derives from the current Root Port.
2) A port based Hello Timer.

b) Topology Changes and Topology Change Notifications are propagated by setting a ‘tc_while’ timer
on each port through which the change or notification is to be propagated. This in turn causes regular
TCNs to be sent through a Root Port (for the duration of the tc_while timer, or until a topology
change acknowledgment is received). There is no longer a need for a ‘tc_detected’ flag for the
bridge as a whole.

Port timers are simple down counters, decremented on a per second ‘tick’ until they reach zero. The Port
Timers State machine provides this functionality for the following timers:

a) hello_when. When this timer ‘expires’ (is decremented to zero) the Port Transition State Machine
causes a Configuration BPDU to be queued for transmission if the port is a Designated Port. The
initial value for the timer is Hello_time (2 seconds by default).

b) tc_while. The interval for which TCNs are sent through the Root Port (for ever in the legacy algo-
rithm in the absence of an acknowledgment) and for which Config BPDUs are sent with the Topol-
ogy Change flag set (determined by the Root in the legacy algorithm). For RSTP, tc_while is twice
hello time on point-to-point links where the partner bridge port is RSTP capable, and ‘Max_Age’
otherwise (non-RSTP capable partners or shared media).

c) fd_while. The Forward Delay timer of the legacy algorithm, with an initial value of Forward Delay.
Note: this can be reduced to twice Hello_time for bridges implementing RSTP. Why this is so may
be the subject of a future paper.

Mick Seaman 2

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

d) info_age. The time remaining before the information held for this port expires, i.e. before message
age equals or exceeds max age for received information on this port.

e) rr_while. ‘recent root while’, the elapsed time since this port was a Root Port forwarding frames.
The initial value for this timer is Forward Delay, as communicated by the Root Bridge, and this
value is maintained for a Root Port forwarding frames.

f) rb_while. ‘recent backup while’, the elapsed time since this port was a Backup Port. The initial
value for this timer is twice Hello_time.
Note: rr_while and rb_while provide the functionality of the ‘Forwards’ and ‘Forwarder’ states
introduced in prior papers. This specification adds no new Port States or Port Roles to the original
algorithm, and models Rapid Reconfiguration as a set of accelerated transitions between those
states.

The Port Transition Machines assign Port Roles to Bridge Ports. It moves the Root Port and Designated
Ports to the Forwarding Port State, and Alternate and Backup Ports to Blocking. It uses the following
variables in addition to the timers already described:

a) initialize. This variable is common to all state machines, and is externally controlled. When asserted
it forces all machines to their initial state. The Bridge Port becomes operational once initialize is
deasserted.

b) port_enabled. This variable reflects the operational state of the MAC service supporting the bridge
port and is TRUE if ‘port oper’ is ‘up’, and FALSE otherwise.

c) role. The assigned Port Role. The port is either a Disabled_port, a Root_port, a Designated_port, an
Alternate_port, or a Backup_port.

d) reselect. This variable is TRUE if the Port Role has to be reassigned before any of the other vari-
ables or conditions can be processed.
Note: Port Role reassignments can happen through changes in the spanning tree information
received on other ports, so reselect is not always TRUE immediately prior to a role change. The
scope and impact of reselect = = TRUE can be used to set the target for an implementation that
aspires to optimal performance through minimizing interactions between the separate port machines.
Good luck!
Formally this state machine methodology calls for infinitely fast continuous execution of all
machines, so reselect should not remain TRUE for any time. However a practical software imple-
mentation can use ‘reselect’ from any port to schedule a bridge wide recomputation of port roles.
Until the recomputation is complete ‘reselect’ can remain TRUE to inhibit other processing.

e) learn. This is the administrative state for the source address learning function for this port provided
by the Bridge Relay Entity.

f) forward. This is the administrative state for the packet forwarding function.
g) learning. This is the operational state for the source address learning function. This description

assumes that some bridge port process, not explicitly described, monitors the administrative state

Figure 17-1—Port Timers

ONE_SECOND

UCT
dec(x) {if (x != 0) x = x-1;}

dec(hello_when); dec(tc_while); dec(fd_while); dec(info_age); dec(rr_while); dec(rb_while);
TICK

initialize

tick

tick = FALSE;

Mick Seaman 3

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

variables learn and forward, and rapidly though not instantaneously changes the operational states to
correspond to the administrative states.

h) forwarding. This is the operational state for the packet forwarding function.
i) info. This variable describes the source of the spanning tree information for this port.

If info is Received, the port has received current (not aged out) information from the Designated
Bridge for the attached LAN (a point-to-point bridge link being a special case of a LAN).
If info is Mine, information for the port has been derived from the Root Port for the Bridge (with the
addition of root port cost information). This includes the possibility that the Root Port is ‘Port 0’, i.e.
the bridge is the Root Bridge for the Bridged Local Area Network.
If info is Aged, information from the root port has been aged out. Just as for ‘reselect’ (see above),
the state machine does not formally allow the ‘Aged’ state to persist. However if there is a delay in
recomputing the new root port, correct processing of a received BPDU is specified.
Finally if the port is disabled, info is Disabled.

j) retiring_roots. A signal controlled by the Root Port. If set, it instructs any Designated Ports with the
rr_while timer still running (recent roots) to revert to the Listening Port State (learning and for-
warding both FALSE). The rr_while timer for that port is stopped when that has been accom-
plished.

k) recent_roots. This is not an independent variable, but is TRUE if any port other than the port whose
state machine it appears in has rr_while running.
A simpler but imperfect description is that recent_roots is TRUE if any other port other than the
Root Port has rr_while running. The first description allows for the possibility of more than one port
considering itself to be the unique Root Port for an instant while role changes are taking place.
A practical software implementation of recent_roots that avoids repeatedly scanning all ports, is to
maintain a bridge wide count of ports that have rr_while running, incrementing or decrementing
this count as rr_while changes for each individual port. For a given port recent_roots is calculated
by subtracting one from that count if rr_while for that port is running.

l) rcvd_info. True if spanning tree information (Root, Root Path Cost, Designated Bridge, Designated
Port) has been received in a BPDU.

m) rcvd_tcn. True if a TCN BPDU has been received. Also true if any other BPDU, yet to be invented,
has been received signalling a topology change notification.

n) rcvd_tc_ack. True if a configuration BPDU with a Topology Change Acknowledge flag has been
received.

o) rcvd_tc. True if a configuration BPDU with a Topology Change flag has been received.
p) rcvd_di. True if a ‘Rapid Configuration BPDU’ indicating a Designated Port’s desire to receive a

confirmation of its role and permission to rapidly transition to forwarding has been received (how-
ever this is to be encoded).

q) rcvd_dc. True if a ‘Rapid Configuration BPDU’ giving a Designated Port permission to rapidly
transition to forwarding has been received.

r) txmt_info. True if spanning tree information (Root, Root Path Cost, Designated Bridge, Designated
Port) is to be transmitted.

s) txmt_tcn. True if a topology change notification is to be transmitted, either as a TCN BPDU or
(possibly) as a flag in a ‘Rapid Configuration BPDU’.

t) txmt_tc. True if a configuration BPDU with a topology change flag set is to be transmitted.
u) txmt_tc_ack. True if a configuration BPDU with a topology change acknowledge flag set is to be

transmitted.

The Port Transition State Machine also makes use of the following procedures:

To avoid much repetition it is convenient to define the ‘spanning tree priority’ of spanning tree
information as the number formed from the concatenation of the Root Priority, Root Identifier, Root
Path Cost, Designated Bridge Priority, Designated Bridge Identifier, Designated Port Priority, and
Designated Port Identifier, with each of these components always having greater significance than
its successor. If the spanning tree priority of two sets of information are compared, the numerically
lower has the ‘higher’ priority. The spanning tree priority of information plus a Port Cost component

Mick Seaman 4

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

for the port on which it was received is also defined. The Port Cost component is added to the Root
Path Cost.

a) better_msg. Returns TRUE if the spanning tree information received in a BPDU:
1) has a higher priority than the information current for the port, just as for the legacy algorithm.
2) is from the same Designated Port as the current information, i.e. from the same Designated

Bridge and Designated Port priority and number.
b) select_as_root_port. Returns TRUE if (info == Received) for the port and its spanning tree infor-

mation plus Port Cost has a higher priority than any other port with (info == Received), and a higher
priority than the information for ‘Port 0’.

c) select_as_alternate_port. Returns TRUE if (info == Received) for the port, the port is not selected
as the root port, but the information for the root port plus the root port’s port cost does not have a
higher priority than the information for this port without the inclusion of its own port cost compo-
nent, and the Designated Bridge identified by the received information is not this bridge.

d) select_as_backup_port. Returns TRUE if the port would otherwise be an alternate port but the Des-
ignated Bridge identified by the received information for the port is this bridge.

e) select_as_designated_port. Returns TRUE if the information for the root port plus the root port’s
own port cost has a higher priority than the information for this port without the inclusion of its own
port cost component.

f) tc_prop(port). Starts tc_while on all other ports.
g) flush(port). Removes all address entries learned on this port from the filtering database.
h) flush_others(port). Removes all address entries learned on all other ports from the filtering data-

base.

Mick Seaman 5

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

Figure 17-1—Port Role Transitions

role = Disabled_port;
INIT

rr_while = 0;

initialize

role = Disabled_port;

port_enabled

!port_enabled && (role != Disabled_port)uct

DISABLE

!learning && !forwarding

DISABLED_PORT

reselect = True; info = Aged;
AGED

reselect = TRUE; copy_pdu_info;
NEW

uct

role = Root_port; reselect = FALSE;
ROOT_PORT

role = Alternate_port; reselect = FALSE;
BLOCK_ALTERNATE

role = Alternate_port; reselect = FALSE;
ALTERNATE_PORT

role = Backup_port; rb_while = 2*Forward_delay;
BACKUP_PORT

role = Designated_port; info = Mine; reselect = False;
DESIGNATED_PORT

!learning && !forwarding

received_pdu

rcvd_info && better_msg

(role != Root_port) && select_as_root_port

(role != Alternate_port) && select_as_alternate_port

learn = FALSE; forward = FALSE; flush(port);

port_enabled && (info_age == 0) &&
learn = FALSE; forward = FALSE; flush(port);

role = Backup_port; reselect = FALSE;
BLOCK_BACKUP

!learning && !forwarding

(role != Backup_port) && select_as_backup_port

learn = FALSE; forward = FALSE; flush(port);

(role != Designated_port) && select_as_designated_port

reselect = FALSE; rr_while = 0;

rr_while = 0;

(info == Received)

info = Disabled; rcvd_info = FALSE; info = Received;

Mick Seaman 6

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

Figure 17-2—Root Port Transitions

tc_while = 2*Hello_time;
RLT retiring_roots = TRUE

RL3

ROOT

rcvd_dc = 0; txmt_di = 0

RL

rcvd_dc = 0; txmt_di = 0
RF

fd_until = Fwd_delay;
learn = TRUE;

learning

UCT

rtrans &&
learn

recent_roots &&

txmt_tcn = TRUE
RL4

tc_when = Hello_time

UCT

rtrans && !learn

(hello_when == 0) &&

!recent_roots &&

rtrans: ((fd_until == 0) || (!recent_roots && (rb_until == 0)))

UCT

PORT

RL2
rcvd_tcn = rcvd_tc = FALSE;

UCT

retiring_roots = TRUE
RF3

UCT

txmt_tcn = TRUE
RF4

tc_when = Hello_time

UCT

rcvd_tcn = rcvd_tc = FALSE;
RF2

tc_prop(port);

UCT

forward = TRUE;
RFT

fd_until = 0;

forwarding

rcvd_dc

(tc_while != 0)

rcvd_dc

rcvd_tcn || rcvd_tc

tc_prop(port);

hello_when == 0 &&
tc_while != 0

rcvd_di &&

!retiring_roots &&
!forward

(retiring_roots || rcvd_di)

retiring_roots = FALSE;
RCF

forwarding &&
!recent_roots

recent_roots &&
!retiring_roots

txmt_dc = TRUE;

UCT

RL1
tc_while = 0;

rcvd_tc_ack

rcvd_tc_ack= FALSE;

rcvd_tcn || rcvd_tc

UCT

RF1
tc_while = 0;
rcvd_tc_ack= FALSE;

rcvd_tc_ack

flush_others(port);

flush_others(port);

rcvd_di = FALSE;

Mick Seaman 7

State Machines for P802.1w Rapid Reconfiguration Rev 0.95 10/18/99

Figure 17-3—Designated Port Transitions

txmt_di = TRUE
DI

tc_prop(port);
DLT

txmt_config = TRUE;
DL2

DESIGNATED

rcvd_di = 0; txmt_dc = 0; rcvd_tc = 0; rcvd_tc_ack = 0;
DL

rcvd_di = 0; txmt_dc = 0 rcvd_tc = 0; rcvd_tc_ack = 0;
DF

fd_until = Fwd_delay;
learn = TRUE;

dc_rcvd ||

learning

UCT

dtrans &&
learn

hello_when == 0

forward

hello_when = Hello_time;

UCT

dtrans && !learn

dblock

dblock: (rr_while && retiring_roots && !dc_rcvd)
dtrans: ((fd_until == 0) || dc_rcvd)

UCT

rr_while = 0;
DLS

PORT

!learning && !forwarding

txmt_tc_ack = TRUE;
DL1

rcvd_tcn = FALSE;

UCT

DF2
UCT

txmt_tc_ack = TRUE;
DF1

rcvd_tcn = FALSE;

UCT
forward = TRUE;

DFT

fd_until = 0;

forwarding

learn = FALSE;
DBT

forward = FALSE;
fd_while = Fwd_delay;

UCT

UCT

rcvd_di ||

rcvd_tcn

tc_prop(port);

hello_when == 0

rcvd_tcn

txmt_tc = (tc_while == 0)

txmt_config = TRUE;

hello_when = Hello_time;
txmt_tc = (tc_while == 0)

flush_others(port);

flush_others(port);

tc_prop(port);
flush_others(port);

rcvd_tc ||
rcvd_tc_ack

rcvd_di ||
rcvd_tc ||
rcvd_tc_ack

