Port Based Network Login

EAP Over Ethernet Overview

Overview

- Method for performing authentication of host to obtain access to switched LAN. Occurs at the first point of attachment (i.e. the edge).
- Occurs early in the start-up process. Ideally before DHCP.
- Switch Port remains disabled/blocked until authentication succeeds, at which point it transitions to fowarding state.
- Ageing and re-authentication by switch may be supported, but port remains fowarding unless re-authentication fails.
- Authentication should be a per-port control. Some ports will not run the authentication protocol (e.g. uplinks).
- Client OS should couple with log on/logoff mechanisms

General Topology

Why Edge Authentication

Instead of in the core of the network

- Better security fewer points of attack
- Simplicity simple topology considerations.
- Scalability manage port state not FDB entries.
- Availability Core switch failover is transparent and edge switch failure only impacts small set of clients.
- No Media Translation no issues converting PDU formats.
- Minimal Multicast Propagation no downstream switches

Protocol Overview

- Encapsulate the Extensible Authentication Protocol (RFC 2284) in Ethernet Frames (EAPOE).
- EAP is a general protocol supporting multiple authentication methods (smart cards, Kerberous, public key, one-time password, etc).
- Switch relays authentication exchanges between client and 'back-end' authentication server.
- Switch controls port forwarding state based upon the result of the authentication exchanges.

EAPOE Frame Format

Identifier Len	
Type	Version Code
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
Destination Address.	Source Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
Destination Address	
+-+-+-+-+-+-	+-
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4	5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1	2 3

Some Interesting Fields

DA - multicast (perhaps in BPDU range)

Type - new Ethertype

Version - current version number of EAPOE protocol

Code - type of EAP packet (req, resp, success, failure)

Identifier - random value to identify exchange session

Length - size of EAP packet (includes Code, ID, Len, and Data)

Data - zero or more code dependent octets, up to max PDU.

Protocol Operation

- Initiated by Client or Switch. Switch initiates on 'port up' indication. Client initiates at boot-up and/or login.
- Switch always requests identity. Client requests switch initiate identity request.
- Use exponential backoff if responses are not received. Switch responsible for retransmissions.
- If identity is known, may use unicast DA else use multicast DA. (However, issues ever using unicast DA).

Switch Initiation

Client Initiation

Switch Statemachine

Paul Congdon

IEEE Plenary, Montreal, July 1999

Hewlett Packard

Client Statemachine

Additional Services

- Allow port VLAN membership to be assigned as outcome of authentication
 - enables the un-authenticated VLAN
 - enables end-station manageability after failed authentication
 - enables the association of VLAN assignment to user identity
- Allow mechanism to initiate LAN usage accounting.
- Supports a mechanism to associate incoming traffic priority with user identity