
ABBREVIATIONS:
PIM: Port Information Machine
PRS: Port Role Selection Machine
PRT: Port Role Transition Machine
PST: Port State Transition Machine
RCM: Role Confirmation Machine
TCM: Topology Change Machine
PPM: Port Protocol Migration Machine
PRI: Port Role Information State Machine
PTX: Port Transmit Machine
PTI: Port TImers Machine

NOTE: For convenience all timers are collected together into one state machine.

PORT INFORMATION (PER PORT)
rcvdMsg, infoIs, reselect,

portInfo, syncReq, inSync, updtInfo
operEdge, adminEdge,

rcvdNew, rcvdOld

PORT ROLE SELECTION
(PER BRIDGE)

rootInfo

PORT ROLE TRANSITIONS
(PER PORT)

role, sync, syncPort, reRoot

rcvdBpdu

rootInforeselect

portEnabled

selectedRole
reselect

PORT TRANSMIT (PER PORT)
txCount

NOTE: THIS OVERVIEW IS NOT ITSELF A STATE MACHINE BUT SERVES TO ILLUSTRATE THE PRINCIPAL VARIABLES THAT ARE USED TO
COMMUNICATE BETWEEN THE INDIVIDUAL RSTP STATE MACHINES AND THE VARIABLES LOCAL TO EACH MACHINE

ROLE TIMERS
fdWhile, rrWhile, rbWhile

PORT PROTOCOL
MIGRATION
(PER PORT)

RSTP STATE MACHINES - AN OVERVIEW

portInfo
infoIs

rcvdNew
rcvdOld

sendNew

newInfo

PORT STATE
TRANSITIONS
(PER PORT)

learn

learning

reRoot

forwarding

forward

syncPort

BEGIN

tc

TOPOLOGY CHANGE
(PER PORT)

AGEING TIMER
infoAge

TC TIMER
tcWhile

rcvdTc
rcvdTcn
rcvdTcAck

role
sync
reqSync

TRANSMIT TIMERS (PER PORT)
helloWhen

tcWhile

role

tcProp

syncReq
inSync

tick

operEdgerole

newInfo

updtInfo
inSync

newInfo, tcAck

sync

infoIs = Aged;
reselect = TRUE;

AGED

CURRENT

rcvdBpdu = rcvdNew = rcvdOld =
FALSE;

portInfo = rootInfo; updtInfo = FALSE;
inSync = syncReq = FALSE;

operEdge = adminEdge;
infoAge = 0; infoIs = Disabled;

reselect = TRUE;

!portEnabled &&
(infoIs != Disabled)

DISABLED

updtInfo

rcvdBpduportEnabled

portInfo = rootInfo;
updtInfo = FALSE;

inSync = sync = FALSE;
infoIs = Mine; newInfo = TRUE;

(!reselect && updtInfo)

UPDATE

(infoIs == Received) && (infoAge == 0) && !updtInfo &&
!reselect && !rcvdBpdu

(rcvdMsg == BetterDesignatedMsg)

(updtInfo && !reselect)

UCT

BEGIN

PIM: PORT INFORMATION MACHINE (PER PORT)

portInfo = recordStpInfo();
updtInfoAge();

inSync = sync = FALSE;
syncReq = recordSyncReq();

infoIs = Received; reselect = TRUE;

BETTER

UCT

ELSE

rcvdMsg = rcvBpdu();
operEdge = FALSE;

BpduVersion();
recordTcFlags();

rcvdBpdu = FALSE;

RECEIVE

rcvdBpdu && !updtInfo && !reselect

syncReq = recordSyncReq();
updtInfoAge();

REPEAT

UCT

(rcvdMsg == RepeatedDesignatedMsg)

recordStpInfo()
{ /* Copies spanning tree information, i.e. Designated Root thru Designated Port, from a ConfigBPDU or an RstpBpdu with a Designated Port
Role to the vector portInfo. */
}
recordTcFlags()
{ /* Sets rcvdTc, rcvdTcn, and rcvdTcAck, if the Topology Change, Topology Change Notification, or Topology Change Acknowledgment flags
respectively are set in a ConfigBPDU or RstpBpdu . Sets rcvdTcn if the BPDU is a TcnBpdu. */
}
recordSyncReq()
{ /* Sets syncReq if the BPDU is an RstpBpdu with a Designated Port Role, and the syncReq flag is set, and the attached LAN is a point to point
link. NOTE: the syncReq flag is a new proposal! */
}
updtInfoAge()
{ /* Updates infoAge from a ConfigBPDU or an RstpBpdu with a Designated Port Role. Copies all timer parameters (Message Age, Max Age,
Hello Time, Forward Delay) from the BPDU. */
}
RcvdMsg rcvBpdu()
{ /*
Returns BetterDesignatedMsg if the received PDU is an RstpBpdu with a Designated Port Role, or a Config BPDU, and either the spanning tree
information in the received PDU is strictly better than that already held for the port (comparing Designated Root, Root Path Cost, Designated
Bridge, and Designated Port parameters) or the Designated Bridge in the received PDU information is the same as that already held for the port
and the spanning tree information or any of the timer parameters received with the BPDU differ from that already held.

Returns RepeatedDesignatedMsg if the received PDU is an RstpBpdu with a Designated Port Role, or a Config BPDU, and the spanning tree
information in the received PDU is the same as that already held for the port.

Returns ConfirmedRootMsg if the received PDU was received on a point to point link, and is an RstpBpdu with a Root Port Role, the receiving
port has a Designated Port Role, and the Spanning Tree information in the received BPDU has the same Root and a worse (i.e. higher) Ro ot
Path Cost than the receiving port.

Otherwise, the received BPDU contains inferior information, or is a TCN BPDU. */
}
BpduVersion()
{ /* Sets rcvdOld if the BPDU received is a version 0 or version 1 PDU, either a TCN or a Config BPDU. Sets rcvdNew if the received BPDU is an
RSTP BPDU. */
}

recordStpInfo()
{ /* Copies spanning tree information, i.e. Designated Root thru Designated Port, from a ConfigBPDU or an RstpBpdu with a Designated Port
Role to the vector portInfo. */
}
recordTcFlags()
{ /* Sets rcvdTc, rcvdTcn, and rcvdTcAck, if the Topology Change, Topology Change Notification, or Topology Change Acknowledgment flags
respectively are set in a ConfigBPDU or RstpBpdu . Sets rcvdTcn if the BPDU is a TcnBpdu. */
}
recordSyncReq()
{ /* Sets syncReq if the BPDU is an RstpBpdu with a Designated Port Role, and the syncReq flag is set, and the attached LAN is a point to point
link. NOTE: the syncReq flag is a new proposal! */
}
updtInfoAge()
{ /* Updates infoAge from a ConfigBPDU or an RstpBpdu with a Designated Port Role. Copies all timer parameters (Message Age, Max Age,
Hello Time, Forward Delay) from the BPDU. */
}
RcvdMsg rcvBpdu()
{ /*
Returns BetterDesignatedMsg if the received PDU is an RstpBpdu with a Designated Port Role, or a Config BPDU, and either the spanning tree
information in the received PDU is strictly better than that already held for the port (comparing Designated Root, Root Path Cost, Designated
Bridge, and Designated Port parameters) or the Designated Bridge in the received PDU information is the same as that already held for the port
and the spanning tree information or any of the timer parameters received with the BPDU differ from that already held.

Returns RepeatedDesignatedMsg if the received PDU is an RstpBpdu with a Designated Port Role, or a Config BPDU, and the spanning tree
information in the received PDU is the same as that already held for the port.

Returns ConfirmedRootMsg if the received PDU was received on a point to point link, and is an RstpBpdu with a Root Port Role, the receiving
port has a Designated Port Role, and the Spanning Tree information in the received BPDU has the same Root and a worse (i.e. higher) Ro ot
Path Cost than the receiving port.

Otherwise, the received BPDU contains inferior information, or is a TCN BPDU. */
}
BpduVersion()
{ /* Sets rcvdOld if the BPDU received is a version 0 or version 1 PDU, either a TCN or a Config BPDU. Sets rcvdNew if the received BPDU is an
RSTP BPDU. */
}

inSync = TRUE;

CONFIRM

UCT

(rcvdMsg == ConfirmedRootMsg)

selectRoles(bridge);
clearReselect(bridge);

ROLE_SELECTION

reselect1 || reselect2 || ...reselectn

PRS: PORT ROLE SELECTION MACHINE (PER BRIDGE)
BEGIN

selectDisabled(bridge)
{ /* Sets selectedRole to DisabledPort for all bridge ports. */
}
selectRoles(bridge)
{ /* Assigns a role, i.e. sets selectedRole to one of DisabledPort, RootPort, DesignatedPort, AlternatePort, or BackupPort for each port of the bridge.
First selects the RootPort from ports with (portIs == Received), choosing the port with the best Spanning Tree Information after the port's Path Cost
has been added. If this Spanning Tree information differs from that held as rootInfo for the bridge, updates the latter and clears inSync and sync for
all bridge ports.
Then sets updtInfo for all other ports for which:

a) (portIs == Received) and the Spanning Tree Information, without the port's own Path Cost added, is worse than the RootPort 's
 with its Path Cost added
b) (portIs == Aged)
c) (portIs == Mine) and the Spanning Tree Information for the port or the associated timer parameters differ from those with the for
 the RootPort with its Path Cost added).

*/
}
clearReselect(bridge)
{/* Sets reselect = FALSE for all ports */
}

selectDisabled(bridge);

INIT_BRIDGE

UCT

BEGIN

INIT_PORT

role = DisabledPort;
sync = TRUE; syncPort =FALSE;

reRoot = FALSE;
rrWhile = 0; rbWhile = 0;

UCT

sync = TRUE; rrWhile = 0;
syncPort = syncReq = reRoot =

FALSE;

BLOCKED_PORT

role = selectedRole;
inSync = reqSync = FALSE;

fdWhile = FwdDelay;
learn= forward = FALSE;

((selectedRole == DisabledPort) ||
(selectedRole == AlternatePort) ||

(selectedRole == BackupPort))
&& (role != selectedRole)

BLOCK_PORT

!learning &&
!forwarding

rbWhile = 2*Hello_time;
BACKUP_PORT

PRT: PORT ROLE TRANSITIONS STATE MACHINE (PER PORT)
PAGE 1 OF 3 : SHOWING INITIALIZATION OF THE PORT ROLE TRANSITIONS STATE MACHINE AND THE DISABLED_PORT, ALTERNATE_PORT, BACKUP _PORT

AND IMMEDIATELY ASSOCIATED STATES

(rbWhile != 2*Hello_time) &&
(role = BackupPort)

(fdWhile != FwdDelay) ||
syncReq || syncPort || inSync
|| reRoot

UCT

role = RootPort; syncPort = reqSync = FALSE;
reRoot = FALSE; rrWhile = FwdDelay;

ROOT_PORT

(selectedRole == RootPort)
&& (role !=selectedRole)

 fdWhile= FwdDelay;
 learn = TRUE;

ROOT_LEARN

ReRootBridge();
reRoot = TRUE;

REROOT

UCT

UCT

(inSync || syncPort || reqSync || reRoot || (rrWhile != FwdDelay)) && !syncReq

fdWhile = 0;
forward = TRUE;

ROOT_FORWARD

((fdWhile == 0) || (reRooted && (rbWhile == 0))) && !learn && !syncReq

PRT: PORT ROLE TRANSITIONS STATE MACHINE (PER PORT)
PAGE 2 OF 3 : SHOWING THE ROOT PORT STATES

((fdWhile == 0) || (reRooted && (rbWhile == 0))) && learn && !forward && !syncReq

UCT

syncReq = FALSE;
newInfo = TRUE;

REPLY

SyncBridge();

SYNC_BRIDGE

UCT

syncReq && !inSync

synced && !sync

NOTE: All transtions, except UCT, qualified by "&& !reselect".

reRooted = ((rrWhile1 == 0) && (rrWhile2 == 0) && ... (rrWhilen == 0)) for all ports except this Root Port
synced = (sync1 && sync2 && ... syncn) for all ports except this Root Port

syncBridge()
{/* Sets syncPort for all other ports. */
}
reRootBridge()
{/* Sets reRoot for all other ports. */
}

UCT

sync = TRUE;

ROOT_SYNCED

syncReq && !sync

UCT

reRoot = FALSE;

REROOTED

!forward &&
!reRoot

UCT

reRoot && forward

role = DesignatedPort; syncReq = FALSE;

DESIGNATED_PORT

 learn = TRUE;
fdWhile= FwdDelay;

DESIGNATED_LEARN

UCT

forward = TRUE;
fdWhile = 0;

DESIGNATED_FORWARD

((rrWhile == 0) || !reRoot) && ((fdWhile == 0) || sync) && !syncPort) || operEdgePort) && !learn

PRT: PORT ROLE TRANSITIONS STATE MACHINE (PER PORT)
PAGE 3 OF 3 : SHOWING THE DESIGNATED PORT STATES

REQUEST_SYNC
reqSync = TRUE;
newInfo = True;

((syncPort && !sync) || (reRoot && (rrWhile != 0)) && !operEdge) && (learn || forward)

UCT

(selectedRole == DesignatedPort)
&& (role != selectedRole)

learn = forward = FALSE;
fdWhile= FwdDelay;

DESIGNATED_LISTEN

UCT

((rrWhile == 0) || !reRoot) && ((fdWhile == 0) || sync) && !syncPort) || operEdgePort) && learn && !forward

NOTE: All transtions, except UCT, qualified by "&& !reselect".

reRoot = FALSE;

RETIRED_ROOT

UCT

(rrWhile == 0)
&& reRoot

sync =TRUE; rrWhile = 0;
syncPort = reqSync = FALSE;

DESIGNATED_SYNCED

UCT

UCT

(!learning &&
!forwarding && !sync) ||
(inSync && !sync) ||
(operEdge && !sync) ||
(reqSync && sync) ||
(syncPort && sync)

(!forward) &&
(!sync && !reqSync)

tc = !operEdge;
learning = TRUE;

LEARNING

PST: PORT STATE TRANSITION MACHINE (PER PORT)

learning = FALSE;
forwarding = FALSE;

DISCARDING

!forward

forwarding = TRUE;

FORWARDING

forward

learn

NOTE: A small system dependent delay may occur on each of the transitions shown.

!learn

BEGIN

ACTIVE

rcvdTc = rcvdTcn = rcvdTcAck =
tc = tcProp = FALSE;

INACTIVE

if Designated tcAck = TRUE;
rcvdTcn = FALSE; rcvdTc = FALSE;

tcPropagation();

NOTIFIED

rcvdTcAck

rcvdTcn || rcvdTc

TCM: TOPOLOGY CHANGE MACHINE (PER PORT)
TOPOLOGY CHANGE DETECTION, NOTIFICATION, PROPAGATION AND FILTERING DATABASE FLUSHING

 tcWhile = 0;
 rcvdTcAck = FALSE;

ACKNOWLEDGED

UCT

tcWhile = 2*Hello_time;
tcPropagation();

tc = FALSE;

DETECTED

tc

tcWhile = 2*Hello_time;
flush();

tcProp = FALSE;

PROPAGATING

flush(); tcWhile = 0;
tc = tcProp = FALSE;

INIT

(role != Root_port) && (role != Designated_port)

rcvdTc ||
rcvdTcn ||
rcvdTcAck ||
tc || tcProp

UCT UCT

UCT

UCT

(role == Root_port) ||
(role == Designated_port)

BEGIN

tcProp &&
!operEdge

tcPropagation()
{ /* Sets tcprop for all other ports. */
}
flush()
{ /* Flushes the filtering database for this port. !!! Unless an edge port!!!*/
}

ONE_SECOND

dec(helloWhen); dec(tcWhile); dec(tdWhile); dec(infoAge);
dec(rrWhile); dec(rbWhile);

tick = FALSE;

TICK

UCT

PORT TIMERS STATE MACHINE (PER PORT)

BEGIN

tick == TRUE

dec(x)
{ if (x !=0) x= x-1;
}

msyncWhile = MigrateSync;
sendOld = TRUE;

SEND_OLD

msyncWhile = MigrateSync;
mcheck = FALSE;
sendNew = TRUE;

SEND_NEW

((msyncWhile == 0) && rcvdOld)

BEGIN || (portInfo == Disabled)

PPM: PORT PROTOCOL MIGRATION (PER PORT)

((msyncWhile == 0) && rcvdNew)

((msyncWhile != 0)
&& (rcvdOld || rcvdNew) rcvdNew = rcvdOld = FALSE;

SENDING_NEW

SENDING_OLD
rcvdNew = rcvdOld = FALSE;

((msyncWhile != 0)
&& (rcvdOld || rcvdNew)

mcheck

mcheck

UCT

UCT

newInfo = FALSE;

IDLE

 txTcn(); txCount +=1;
helloWhen = HelloTime;

TRANSMIT_TCN

helloWhen = 0;
txCount = 0;

INIT

UCT

UCT

txCount = 0;

RLSE

PTX: PORT TRANSMIT MACHINE (PER PORT)

UCT

TRANSMIT_CONFIG

 txConfig(); txCount +=1;
tcAck = FALSE;

helloWhen = HelloTime;

txRstp(); txCount +=1;
tcAck = FALSE;

helloWhen = HelloTime;

TRANSMIT_RSTP

UCT

(txCount == TxHoldCount) &&
(helloWhen == 0)

!sendNew && (txCount < TxHoldCount) &&
((role == Designated_port) && ((helloWhen == 0) || newInfo))

!sendNew && (txCount < TxHoldCount) &&
((role == Root_port) && ((helloWhen == 0) || newInfo) && (tcwhile != 0)))

sendNew && (txCount < TxHoldCount) &&
(((role == Designated_port) && ((helloWhen == 0) || newInfo)) ||
((role == Root_port) && (((helloWhen == 0) && (tcwhile != 0)) || newInfo)))

BEGIN

txRstp()
{ /* Transmits an RSTP BPDU. The Root and Root Path Cost parameters in the BPDU are set as stored for rootInfo for the transmitting bridge.
The Designated Bridge and Designated Port parameters are set as for the transmitting port. The port role flags are set to the role of the
transmitting port and the inSync and syncReq flags are set to the values of the sync and reqSync flags for the transmitting port respectively. The
topology change flag is set if (tcWhile != 0) for the port. The topology change notification and topology change acknowledge flags in the BPDU
are never used (propose that topology change notification flag not be added as previously suggested!). */
}
txTcn()
{ /* Transmits a TCN BPDU. */
}
txConfig()
{ /* Transmits an Config BPDU. The Root and Root Path Cost parameters in the BPDU are set as stored for rootInfo for the transmitting bridge.
The Designated Bridge and Designated Port parameters are set as for the transmitting port. The topology change flag is set if (tcWhile != 0) for
the port. The topology change notification flag is set to the value of TcAck for the port. */
}

txRstp()
{ /* Transmits an RSTP BPDU. The Root and Root Path Cost parameters in the BPDU are set as stored for rootInfo for the transmitting bridge.
The Designated Bridge and Designated Port parameters are set as for the transmitting port. The port role flags are set to the role of the
transmitting port and the inSync and syncReq flags are set to the values of the sync and reqSync flags for the transmitting port respectively. The
topology change flag is set if (tcWhile != 0) for the port. The topology change notification and topology change acknowledge flags in the BPDU
are never used (propose that topology change notification flag not be added as previously suggested!). */
}
txTcn()
{ /* Transmits a TCN BPDU. */
}
txConfig()
{ /* Transmits an Config BPDU. The Root and Root Path Cost parameters in the BPDU are set as stored for rootInfo for the transmitting bridge.
The Designated Bridge and Designated Port parameters are set as for the transmitting port. The topology change flag is set if (tcWhile != 0) for
the port. The topology change notification flag is set to the value of TcAck for the port. */
}

NOTATION:
In the Overview variables are shown both within the machine where they are principally used and between machines where they are
use to communicate information. In the latter case they are shown with a variety of arrow styles, running from one machine to another,
that provide an overview of how the variables are typically used:

Not changed by the target machine. Where the state machines are both per port, this variable communicates between machine
instances for the same port.

Set (or cleared) by the originating machine, clear (or set) by the target machine. Where the state machines are both per port, this
variable communicates between machine instances for the same port.

As above except that the originating per port machine instance communicates with multiple port machine instances (by setting or
clearing variables owned by those ports).

As above except that multiple per port instances communicate with (an)other instance(s) (by setting or clearing variables owned by
the originating ports).

typedef enum {BetterDesignatedMsg, RepeatedDesignatedMsg, OtherMsg} RcvdMsg;
typedef enum {Disabled, Mine, Received, Aged} InfoIs;
typedef struct /* StpInfo */
{

Priority root_pri;
Bridge_id root_id;
Stp_cost root_cost;
Priority bridge_pri;
Bridge_id bridge_id;
Priority port_pri;
Port_id port_id;
Centisecs message_age;
Centisecs max_age;
Centisecs forward_delay;
Centisecs hello_time;

}

