OVERVIEW

BEGIN tick portEnabled

v

e

rcvdBpdu

b

r
| PORT INFORMATION (PER PORT) \
|) rcvdNew, rcvdOld, rcvdNew [PORT PROTOCOL 1
newlnfo) infols, portinfo, rcvdMsg, revdold l>] MIGRATION |
1 reselect, selected I—ﬁ (PER PORT) |
| - ——— __proposed, agreed, updtinfo, 4 | | mcheck, sendNew |
[,
i Ly AGEING TIMER | | | | 'MIGRATION TIMER | |
o . _ __ _nfoAge _ __ __ __ _ _ 1 I (PER PORT) |
rcvdTen - T T i | I \Whil |
revdTcAck reselect portinfoA tinfo updﬂnfo A | L —msyncWhie |
selected |nfo|s iroo mo agreed I
PORT ROLE SELECTION role
(PER BRIDGE) |
| rootinfo —
I I
selectedRole synced
selected sync operEdge,
agreed forceVersion
reRoot
sync proposed
@ agreed
- < leamn - — — e — -
| PORT STATE PORT ROLE TRANSITIONS |
TRANSITIONS HM (PER PORT) |
: (PER PORT) learning '| role, sync, sync, reRoot |
din
- | |
tc I |
y -_——_—————————— — — = -
|_J____ — 1 I ROLE TIMERS ||
| TOPOLOGY CHANGE rol L fdwhile, rWhile, rowhile N
(PERPORT) =~ = I =—m—————— = -
I P role newlnfo
; sync
: | TC TIMER : tcProp forceVersion proposing
tcWhile
L _ —1
tcWhile e - -
PORT TRANSMIT (PER PORT) I rootinfo
] txCount |‘ <
¢ dNew
newlnfo, tcAck Af——————————————— = < sendiNe
™ TRANSMIT TIMERS (PER PORT) : |
helloWhen
I e ol
—_— e — e — — —_ — = d
NOTATION: ABBREVIATIONS:
Variables are shown both within the machine where they are principally PIM: Port Information Machine
used and between machines where they are use to communicate PRS: Port Role Selection Machine
information. In the latter case they are shown with a variety of arrow PRT: Port Role Transitions Machine
styles, running from one machine to another, that provide an overview of PST: Port State Transitions Machine
how the variables are typically used: TCM Topology Change Machine
PPM: Port Protocol Migration Machine
Not changed by the target machine. Where the state machines are both PTX: Port Transmit Machine
per Port, this variable communicates between machine instances for the PTI: Port TImers Machine

same port.

Set (or cleared) by the originating machine, cleared (or set) by the target
machine. Where the state machines are both per Port, this variable
communicates between machine instances for the same port.

As above except that the originating per port machine instance
communicates with multiple port machine instances (by setting or
clearing variables owned by those Ports).

~—» > —~~—Pp

As above except that multiple per Port instances communicate with
(an)other instance(s) (by setting or clearing variables owned by the
originating Ports).

NOTE 1: For convenience all timers are collected together into one state machine.

NOTE 2: This overview diagram is not itself a state machine, but serves to illustrate
the principal variables that are used to communicate between the individual RST
state machines and the variables local to each machine.

PORT INFORMATION

BEGIN IportEnabled &&
(infols != Disabled)

rcvdMsg == BetterDesignatedMsg

v

s A

BETTER

DISABLED portinfo = recordStpinfo();
updtinfoAge();
rcvdBpdu = rcvdRSTP = rcvdSTP agreed = proposing = synced = FALSE;
= FALSE; portinfo = myPtinfo(); proposed = recordProposed();
updtinfo = FALSE; infols = Received; reselect = TRUE;
agreed = proposed = FALSE; selected = FALSE;

infoAge = 0; infols = Disabled;
reselect = TRUE;selected = FALSE;

rcvdMsg == RepeatedDesignatedMsg

LT ThportEnabled rcvdBpdu ¢

AGED

REPEAT

infols = Aged;
reselect = TRUE; selected = FALSE;

proposed = recordProposed();
updtinfoAge();

(selected && updtinfo)

UPDATE

portinfo = myPtInfo();
updtinfo = FALSE;
agreed = synced = FALSE;
proposed = proposing = FALSE;
infols = Mine; newlInfo = TRUE;

UCT

UcT

v

agreed = TRUE; proposing = FALSE;

revdMsg == ConfirmedRootMsg

CONFIRM

CT
‘rcvdMsg == OtherMsg

CURRENT

(selected && updtinfo) ‘

rcvdBpdu && !updtinfo

RECEIVE

selected && (infols == Received) && (infoAge == 0)
&& !updtinfo && !rcvdBpdu

rcvdMsg = rcvBpdu();

updtBPDUVersion();
setTcFlags();

rcvdBpdu = FALSE;

——

PORT ROLE SELECTION

BEGIN

!

updtRoleDisabledBridge();
rootinfo = rootPriority();

ucTt ﬁ

ROLE_SELECTION

clearReselectBridge();
updtRolesBridge();
setSelectedBridge();

reselectl || reselect2 || ...reselectN

INIT_BRIDGE

DISABLED, ALTERNATE,

BACKUP

((selectedRole == DisabledPort) ||

BEGIN (selectedRole == AlternatePort) ||
(selectedRole == BackupPort))
&& (role != selectedRole)
INIT_PORT

role = DisabledPort;
synced = FALSE;
sync = reRoot = TRUE;
rrWhile = fdWhile = FwdDelay;

rbWhile = 0;
ucT
BLOCK_PORT
role = selectedRole;
learn= forward = FALSE;
(rbWhile != 2*HelloTime) &&
(role == BackupPort)
llearning &&
Iforwarding

BACKUP_PORT
rbWhile = 2*HelloTime;
UCT

BLOCKED_PORT

fdWhile = FwdDelay;

synced = TRUE; rrWhile = 0;
sync = reRoot = FALSE

(fdWhile != FwdDelay) ||
sync || reRoot || Isynced

|

All transtions, except UCT,

are qualified by "&& selected &&!updtinfo”.

proposed && !synced

ROOT

(selectedRole == RootPort)
&& (role !=selectedRole)

ROOT_PROPOSED ROOT_FORWARD
(proposed && allSynced) || setSyncBridge(); fdWhile = 0;
(!synced && allSynced) proposed = FALSE; forward = TRUE;
ﬁ ucTt ucTt ¢
ROOT_AGREED ROOT_LEARN
proposed = sync = FALSE; fdWhile= FwdDelay;
fforward && synced = allSynced; learn = TRUE;
IreRoot newlinfo = TRUE; UcT ﬁ
REROOT uer REROOTED
setReRootBridge(); reRoot = FALSE;
UCT UCT
A A A A A A A
ROOT_PORT
role = RootPort;
rrWhile = FwdDelay;
rr'While !'= FwdDelay
reRoot && forward

((fdWhile == Q) || (reRooted && (rbWhile == 0)) && (forceVersion >= 2)) && !learn

All transtions, except UCT, are qualified by "&& selected && !updtinfo”.
The following abbreviations are used in this diagram:
allSynced: (agreel && agree2 && ... agreeN) for all Ports other than this Root Port.
reRooted: ((rfWhilel == 0) && (rrWhile2 == 0) && ... (rr'WhileN == 0)) for all ports except this Root Port.

((fdWhile == 0) || (reRooted && (rbWhile == 0)) && (forceVersion >= 2)) && learn && !forward

lforward &&

lagreed && !proposing && loperEdge

DESIGNATED

(selectedRole == DesignatedPort)

(!learning && !forwarding

&& Isynced) ||
(agreed && !synced) ||

(operEdge && !synced) ||

(sync && synced)

&& (role != selectedRole)

v

DESIGNATED_PROPOSE

DESIGNATED_FORWARD

proposing = TRUE;
newlnfo = True;

forward = TRUE;
fdwWhile = 0;

DESIGNATED_SYNCED

(rr'While == 0)

rr'While = 0; synced =TRUE;
sync = FALSE;

&& reRoot

UcTt

DESIGNATED_RETIRED

reRoot = FALSE;

UCT

UcT

UcT

e —

DESIGNATED_LEARN

learn = TRUE;
fdWhile= FwdDelay;

ucTt

—

DESIGNATED_LISTEN

learn = forward = FALSE;
fdWhile= FwdDelay;

UCT

DESIGNATED_PORT

role = DesignatedPort;

‘ ((sync && Isynced) || (reRoot && (rfWhile != 0))) && !loperEdge && (learn || forward)

((fdWhile == 0) || agreed || operEdge) && ((rrWhile ==0) || reRoot) && !sync && !learn

((fdWhile == 0) || agreed || operEdge) && ((rrWhile ==0) || 'reRoot) && !sync && (learn && !forward)

All transtions, except UCT, are qualified by "&& selected && !updtinfo".

PORT STATE
TRANSITIONS

BEGIN

v v

DISCARDING

disableLearning(); learning = FALSE;
disableForwarding();
forwarding = FALSE;

learn

LEARNING

enableLearning();
learning = TRUE;

forward llearn

FORWARDING

tc = loperEdge;
enableForwarding();
forwarding = TRUE;

Iforward

NOTE: A small system dependent delay may occur on each of the transitions shown.

TOPOLOGY CHANGE DETECTION, NOTIFICATION, PROPAGATION AND

FILTERING DATABASE FLUSHING

DETECTED
tcWhile = newTcWhile();
setTcPropBridge();
BEGIN tc = FALSE;
rcvdTcen || revdTe
- i ucT
INIT NOTIFIED
. e = revdTen = revdTe = FALSE;
tgu_sﬂ‘,(g,'r;w\ihgilsoé_ if (role == DesignatedPort) tcAck =
- p= ' TRUE; setTcPropBridge(); tcProp &&
loperEdge
ucT UCT
£ PROPAGATING
INACTIVE tcWhile = newTcWhile();
revdTe = revdTen = revdTcAck = flush();
tc = tcProp = FALSE; tcProp = FALSE;
ucT revdTcAck
revdTce ||
revdTcen ||
revdTcAck || ACKNOWLEDGED
tc || tcProp
tcWhile = 0;
rcvdTcAck = FALSE;
(role == RootPort) || ucT
(role == DesignatedPort)
A A A A
ACTIVE
(role != RootPort) && (role != DesignatedPort)

All transtions, except UCT, are qualified by "&& selected".

PORT TIMERS

y

TICK

dec(helloWhen); dec(tcWhile); dec(fdWhile); dec(infoAge);
dec(rrWhile); dec(rbWhile);dec(msyncWhile);

tick = FALSE;
UCT
BEGIN
ONE_SECOND

‘ tick == TRUE

The following abbreviation is used in this state diagram:
dec(x)

{if (x 1=0) x=x-1;

}

PORT PROTOCOL MIGRATION

BEGIN || !portEnabled

ﬁ
SEND_RSTP

mdelayWhile = MigrateTime;
mcheck = FALSE;
sendRSTP = TRUE;

v.e:

((mdelayWhile 1= 0) && SENDING_RSTP
(rcvdSTP || revdRSTP) rcvdRSTP = rcvdSTP = FALSE;

. mcheck
((mdelayWhile == 0) && rcvdSTP) ||

(forceVersion < 2)

SEND_STP

mdelayWhile = MigrateTime;
sendRSTP = FALSE;

UcT
A

((mdelayWhile 1= 0) && SENDING_STP
(rcvdSTP || revdRSTP) rcvdRSTP = rcvdSTP = FALSE;

) mcheck
((mdelayWhile == 0) && rcvdRSTP)

&& (forceVersion >= 2)

PORT

TRANSMIT

BEGIN
INIT TRANSMIT_CONFIG

newlInfo = FALSE;
hellowhen = 0;
txCount = 0;

(txCount == TxHoldCount) &&
(helloWhen == 0) ¢

h

UCT

txConfig(); txCount +=1;

newinfo = FALSE;

tcAck = FALSE;
ellowhen = HelloTime;

UCT

RLSE

txCount = 0;

UCT

TRANSMIT_TCN

newlInfo = FALSE;
txTen(); txCount +=1;
helloWhen = HelloTime;

UCT

—

TRANSMIT_RSTP

newlInfo = FALSE;
txRstp(); txCount +=1;
tcAck = FALSE;
helloWhen = HelloTime;

ucT

IDLE

L]

sendNew && (txCount < TxHoldCount) &&
(((role == DesignatedPort) && ((helloWwhen == 0) || newInfo)) ||
((role == RootPort) && (((hellowhen == 0) && (tcwhile != 0)) || newlInfo)))

IsendNew && (txCount < TxHoldCount) &&
((role == RootPort) && ((helloWhen == 0) || newInfo) && (tcwhile != 0))

IsendNew && (txCount < TxHoldCount) &&
((role == DesignatedPort) && ((helloWhen == 0) || newlInfo))

All transtions, except UCT, are qualified by "&& selected &&!updtinfo™.

