
OVERVIEW

ABBREVIATIONS:
PIM: Port Information Machine
PRS: Port Role Selection Machine
PRT: Port Role Transitions Machine
PST: Port State Transitions Machine
TCM: Topology Change Machine
PPM: Port Protocol Migration Machine
PTX: Port Transmit Machine
PTI: Port TImers Machine

NOTE 1: For convenience all timers are collected together into one state machine.

NOTE 2: This overview diagram is not itself a state machine, but serves to illustrate
the principal variables that are used to communicate between the individual RST
state machines and the variables local to each machine.

PORT INFORMATION (PER PORT)
rcvdNew, rcvdOld,

infoIs, portInfo, rcvdMsg,
reselect, selected

proposed, agreed, updtInfo,

PORT ROLE SELECTION
(PER BRIDGE)

rootInfo

PORT ROLE TRANSITIONS
(PER PORT)

role, sync, sync, reRoot

rcvdBpdu

rootInforeselect
selected

portEnabled

selectedRole
selected

PORT TRANSMIT (PER PORT)
txCount

ROLE TIMERS
fdWhile, rrWhile, rbWhile

PORT PROTOCOL
MIGRATION
(PER PORT)

mcheck, sendNew

portInfo
infoIs

rcvdNew
rcvdOld

sendNew

newInfo

PORT STATE
TRANSITIONS
(PER PORT)

learn

learning

reRoot

forwarding

forward

sync

BEGIN

tc

TOPOLOGY CHANGE
(PER PORT)

AGEING TIMER
infoAge

TC TIMER
tcWhile

rcvdTc
rcvdTcn
rcvdTcAck

role
sync
proposing

TRANSMIT TIMERS (PER PORT)
helloWhen

tcWhile

role

tcProp

tick

newInfo

updtInfo
agreed

newInfo, tcAck

synced
sync
agreed

MIGRATION TIMER
(PER PORT)
msyncWhile

NOTATION:
Variables are shown both within the machine where they are principally
used and between machines where they are use to communicate
information. In the latter case they are shown with a variety of arrow
styles, running from one machine to another, that provide an overview of
how the variables are typically used:

Not changed by the target machine. Where the state machines are both
per Port, this variable communicates between machine instances for the
same port.

Set (or cleared) by the originating machine, cleared (or set) by the target
machine. Where the state machines are both per Port, this variable
communicates between machine instances for the same port.

As above except that the originating per port machine instance
communicates with multiple port machine instances (by setting or
clearing variables owned by those Ports).

As above except that multiple per Port instances communicate with
(an)other instance(s) (by setting or clearing variables owned by the
originating Ports).

proposed
agreed

operEdge,
forceVersion

role

rootInfo

forceVersion

PORT INFORMATION

infoIs = Aged;
reselect = TRUE; selected = FALSE;

AGED

CURRENT

rcvdBpdu = rcvdRSTP = rcvdSTP
= FALSE; portInfo = myPtInfo();

updtInfo = FALSE;
agreed = proposed = FALSE;
infoAge = 0; infoIs = Disabled;

reselect = TRUE;selected = FALSE;

!portEnabled &&
(infoIs != Disabled)

DISABLED

updtInfo

rcvdBpduportEnabled

portInfo = myPtInfo();
updtInfo = FALSE;

agreed = synced = FALSE;
proposed = proposing = FALSE;
infoIs = Mine; newInfo = TRUE;

(selected && updtInfo)

UPDATE

selected && (infoIs == Received) && (infoAge == 0)
&& !updtInfo && !rcvdBpdu

rcvdMsg == BetterDesignatedMsg

(selected && updtInfo)

UCT

BEGIN

portInfo = recordStpInfo();
updtInfoAge();

agreed = proposing = synced = FALSE;
proposed = recordProposed();

infoIs = Received; reselect = TRUE;
selected = FALSE;

BETTER

rcvdMsg == OtherMsg

rcvdMsg = rcvBpdu();
updtBPDUVersion();

setTcFlags();
rcvdBpdu = FALSE;

RECEIVE

rcvdBpdu && !updtInfo

proposed = recordProposed();
updtInfoAge();

REPEAT

UCT

rcvdMsg == RepeatedDesignatedMsg

agreed = TRUE; proposing = FALSE;

CONFIRM

UCT

rcvdMsg == ConfirmedRootMsg

PORT ROLE SELECTION

clearReselectBridge();
updtRolesBridge();

setSelectedBridge();

ROLE_SELECTION

reselect1 || reselect2 || ...reselectN

BEGIN

updtRoleDisabledBridge();
rootInfo = rootPriority();

INIT_BRIDGE

UCT

DISABLED, ALTERNATE,
BACKUP

BEGIN

INIT_PORT
role = DisabledPort;

synced = FALSE;
sync = reRoot = TRUE;

rrWhile = fdWhile = FwdDelay;
rbWhile = 0;

UCT

fdWhile = FwdDelay;
synced = TRUE; rrWhile = 0;

sync = reRoot = FALSE

BLOCKED_PORT

role = selectedRole;
learn= forward = FALSE;

((selectedRole == DisabledPort) ||
(selectedRole == AlternatePort) ||

(selectedRole == BackupPort))
&& (role != selectedRole)

BLOCK_PORT

!learning &&
!forwarding

rbWhile = 2*HelloTime;
BACKUP_PORT

(rbWhile != 2*HelloTime) &&
(role == BackupPort)

(fdWhile != FwdDelay) ||
sync || reRoot || !synced

UCT

All transtions, except UCT,
are qualified by "&& selected &&!updtInfo".

ROOT

role = RootPort;
rrWhile = FwdDelay;

ROOT_PORT

(selectedRole == RootPort)
&& (role !=selectedRole)

 fdWhile= FwdDelay;
 learn = TRUE;

ROOT_LEARN

setReRootBridge();

REROOT

UCT

UCT

rrWhile != FwdDelay

fdWhile = 0;
forward = TRUE;

ROOT_FORWARD

((fdWhile == 0) || (reRooted && (rbWhile == 0)) && (forceVersion >= 2)) && !learn
((fdWhile == 0) || (reRooted && (rbWhile == 0)) && (forceVersion >= 2)) && learn && !forward

UCT

proposed = sync = FALSE;
synced = allSynced;

newInfo = TRUE;

ROOT_AGREED

setSyncBridge();
proposed = FALSE;

ROOT_PROPOSED

UCT

(proposed && allSynced) ||
(!synced && allSynced)

UCT

proposed && !synced

reRoot = FALSE;

REROOTED

!forward &&
!reRoot

UCT

reRoot && forward

All transtions, except UCT, are qualified by "&& selected && !updtInfo".
The following abbreviations are used in this diagram:
allSynced: (agree1 && agree2 && ... agreeN) for all Ports other than this Root Port.
reRooted: ((rrWhile1 == 0) && (rrWhile2 == 0) && ... (rrWhileN == 0)) for all ports except this Root Port.

DESIGNATED

role = DesignatedPort;

DESIGNATED_PORT

 learn = TRUE;
fdWhile= FwdDelay;

DESIGNATED_LEARN

UCT

forward = TRUE;
fdWhile = 0;

DESIGNATED_FORWARD

((fdWhile == 0) || agreed || operEdge) && ((rrWhile ==0) || !reRoot) && !sync && !learn

DESIGNATED_PROPOSE
proposing = TRUE;
newInfo = True;

((sync && !synced) || (reRoot && (rrWhile != 0))) && !operEdge && (learn || forward)

UCT

(selectedRole == DesignatedPort)
&& (role != selectedRole)

learn = forward = FALSE;
fdWhile= FwdDelay;

DESIGNATED_LISTEN

UCT

reRoot = FALSE;

DESIGNATED_RETIRED

UCT

(rrWhile == 0)
&& reRoot

rrWhile = 0; synced =TRUE;
sync = FALSE;

DESIGNATED_SYNCED

UCT

UCT

(!learning && !forwarding
&& !synced) ||
(agreed && !synced) ||
(operEdge && !synced) ||
(sync && synced)

!forward &&
!agreed && !proposing && !operEdge

((fdWhile == 0) || agreed || operEdge) && ((rrWhile ==0) || !reRoot) && !sync && (learn && !forward)

All transtions, except UCT, are qualified by "&& selected && !updtInfo".

PORT STATE
TRANSITIONS

enableLearning();
learning = TRUE;

LEARNING

disableLearning(); learning = FALSE;
disableForwarding();
forwarding = FALSE;

DISCARDING

!forward

tc = !operEdge;
enableForwarding();
forwarding = TRUE;

FORWARDING

forward

learn

NOTE: A small system dependent delay may occur on each of the transitions shown.

!learn

BEGIN

TOPOLOGY CHANGE DETECTION, NOTIFICATION, PROPAGATION AND
FILTERING DATABASE FLUSHING

ACTIVE

rcvdTc = rcvdTcn = rcvdTcAck =
tc = tcProp = FALSE;

INACTIVE

rcvdTcn = rcvdTc = FALSE;
if (role == DesignatedPort) tcAck =

TRUE; setTcPropBridge();

NOTIFIED

rcvdTcAck

rcvdTcn || rcvdTc

 tcWhile = 0;
 rcvdTcAck = FALSE;

ACKNOWLEDGED

UCT

tcWhile = newTcWhile();
setTcPropBridge();

tc = FALSE;

DETECTED

tc

tcWhile = newTcWhile();
flush();

tcProp = FALSE;

PROPAGATING

flush(); tcWhile = 0;
tc = tcProp = FALSE;

INIT

(role != RootPort) && (role != DesignatedPort)

rcvdTc ||
rcvdTcn ||
rcvdTcAck ||
tc || tcProp

UCT UCT

UCT

UCT

(role == RootPort) ||
(role == DesignatedPort)

BEGIN

tcProp &&
!operEdge

All transtions, except UCT, are qualified by "&& selected".

PORT TIMERS

ONE_SECOND

dec(helloWhen); dec(tcWhile); dec(fdWhile); dec(infoAge);
dec(rrWhile); dec(rbWhile);dec(msyncWhile);

tick = FALSE;

TICK

UCT

BEGIN

tick == TRUE

The following abbreviation is used in this state diagram:
dec(x)
{ if (x !=0) x= x-1;
}

PORT PROTOCOL MIGRATION

mdelayWhile = MigrateTime;
sendRSTP = FALSE;

SEND_STP

mdelayWhile = MigrateTime;
mcheck = FALSE;

sendRSTP = TRUE;

SEND_RSTP

((mdelayWhile == 0) && rcvdSTP) ||
(forceVersion < 2)

BEGIN || !portEnabled

((mdelayWhile == 0) && rcvdRSTP)
&& (forceVersion >= 2)

((mdelayWhile != 0) &&
(rcvdSTP || rcvdRSTP) rcvdRSTP = rcvdSTP = FALSE;

SENDING_RSTP

SENDING_STP
rcvdRSTP = rcvdSTP = FALSE;

((mdelayWhile != 0) &&
(rcvdSTP || rcvdRSTP)

mcheck

mcheck

UCT

UCT

PORT TRANSMIT

IDLE

 newInfo = FALSE;
txTcn(); txCount +=1;

helloWhen = HelloTime;

TRANSMIT_TCN

newInfo = FALSE;
helloWhen = 0;

txCount = 0;

INIT

UCT

UCT

txCount = 0;

RLSE

UCT

TRANSMIT_RSTP

newInfo = FALSE;
txRstp(); txCount +=1;

tcAck = FALSE;
helloWhen = HelloTime;

newInfo = FALSE;
txConfig(); txCount +=1;

tcAck = FALSE;
helloWhen = HelloTime;

TRANSMIT_CONFIG

UCT

(txCount == TxHoldCount) &&
(helloWhen == 0)

!sendNew && (txCount < TxHoldCount) &&
((role == DesignatedPort) && ((helloWhen == 0) || newInfo))

!sendNew && (txCount < TxHoldCount) &&
((role == RootPort) && ((helloWhen == 0) || newInfo) && (tcwhile != 0))

sendNew && (txCount < TxHoldCount) &&
(((role == DesignatedPort) && ((helloWhen == 0) || newInfo)) ||
((role == RootPort) && (((helloWhen == 0) && (tcwhile != 0)) || newInfo)))

BEGIN

UCT

All transtions, except UCT, are qualified by "&& selected &&!updtInfo".

