IEEE 802.1X Pre-Authentication

Bernard Aboba Microsoft

Outline

- Goals
- Conclusions
- Overview of pre-authentication
- State machine
- Threat model
- EAP requirements
- Management frame protection
- Control frame protection
- Protected negotiations
- Key activation
- Summary

Goals

- To present a strawman threat model for IEEE 802.11 Tgi
 - Tim Moore to present detailed threat analysis on Thursday
- To understand the implications of IEEE 802.1X preauthentication
 - Pre-authentication supported in 802.11i Draft 2.2
- To analyze solutions to potential threats
 - Protected capabilities negotiation
 - Key activation
 - Management frame authentication
 - Control frame authentication

Conclusions

- IEEE 802.11i needs a threat model.
 - Without a threat model, you never know when you're done!
 - IEEE 802.1X could use a formal threat model too (to avoid misunderstandings).
- IEEE 802.1X pre-authentication with 802.11 introduces some new wrinkles
 - Supplicant-only initiation
 - Station authenticated to multiple Authenticators simultaneously
 - No controlled and uncontrolled ports
 - 802.11 state machine controls access, not 802.1X state machine
 - IEEE 802.1X frames have a unicast DA and may be forwarded
- IEEE 802.1X pre-authentication has substantial advantages for 802.11
 - Pre-authentication enables a station to authenticate to multiple APs, which is not possible when 802.1X occurs *after* Association.
 - Minimizes connectivity loss during roaming
 - IEEE 802.1X pre-auth makes it possible to authenticate and derive keys early on, use keys to protect as many messages as possible
 - Most management and control frames can be protected, with the exception of Beacon and Probe Request/Response

802.1X Pre-Authentication

- STA authenticates to AP B before connectivity is lost to AP A (if $\Delta T < c/v$)
 - Can send unicast 802.1X data frames to AP B, forwarded by AP A
 - "From DS" or "To DS" set to true (Class 3)
 - Can tune radio to Channel 11 (if $B > r \Delta T$)
- STA reassociates to AP B

Station Velocity

State Machine

- Original 802.11 state machine can be used
- IEEE 802.1X data frames can be sent in State 1,2
 - To DS, From DS =0
 - "Unassociated pre-auth"
- IEEE 802.1X data frames can be sent in State 3
 - To DS or From DS = 1
 - "Associated Pre-auth"
- Unauthenticated Deauth can be silently discarded by STA

Pre-Authentication State Machine

- No "controlled" and "uncontrolled" ports
 - In fact, no "ports" at all!
 - Port doesn't exist until Association/Reassociation exchange
 - RADIUS Access-Request contains no NAS-Port attribute
 - Accounting START sent after successful Association/Reassociation Response w/NAS-Port
- Supplicant initiation only
 - Supplicant authenticates to APs that it is likely to roam to
 - Since roaming decision made by STA, it also handle auth initiation
 - Unsolicited EAP-Request/Identity frames are silently discarded
- 802.11 state machine governs frame treatment
 - 802.11-1999 state machine already supports pre-authentication, no changes required
 - 802.1X "auth complete" an input to 802.11 state machine
 - Reverse of 802.1X after Association, where 802.11 events are inputs to 802.1X state machine

Strawman Threat Model for 802.11

- Snooping, modification or injection of data packets
- Impersonation of legitimate 802.11 STA or AP
- Modification of authentication or control/management messages
- Injection of forged authentication or control/management messages
- Denial of service, including resource starvation
- Disruption of security negotiations
 - Capabilities advertisement
 - Ciphersuite or authentication negotiation

doc.: IEEE 802.11-02/389r0

802.11 EAP Method Requirements

- Question: "What role does EAP have in 802.11 security?"
- Wireless method requirements (from RFC 2284bis):
 - Mutual authentication
 - Key derivation
 - Dictionary attack resistance
 - Support for fast reconnect
 - Question: is 2.5 round trips "fast"?
 - Protected EAP conversation
- To be discussed
 - Ciphersuite negotiation?
 - Key activation?

Threats Addressed by EAP Reqmts.

- Snooping, modification or injection of data packets (802.11 ciphers)
- Impersonation of legitimate 802.11 STA or AP (802.11 ciphers)
- Modification of authentication or control/management messages
- Injection of forged authentication or control/management messages
- Denial of service, including resource starvation
- Disruption of security negotiations
 - Capabilities advertisement
 - Ciphersuite or authentication negotiation

No Mandatory Auth Method: Implications

- Interoperability
 - No guarantee that STA and AP can successfully authenticate
- Configurations without a backend server
 - Authenticator can't just implement the mandatory method; needs to support commonly deployed methods
 - Result: AP may need constant code changes to support new auth methods
 what EAP was designed to prevent!
 - "Pass through" configuration is easier to implement
- IBSS authentication
 - No guarantee that two STAs can authenticate each other
- Effects on 802.1X architecture
 - Backend authentication server originally an optional component
 - Not really possible to "Colocate AS and AP"
 - In EAP, AS and client are assumed to be extensible but AP is not
 - Normative discussion of AAA attributes and protocols
 - Belongs in a non-normative Appendix, not within the main specification.

Protection of Management Frames

- Protectable
 - Association/Reassociation Request/Response, Deauthenticate,
 Disassociate
- Unprotectable
 - Beacon, Probe Request/Response
 - Would need to protect Beacon with multicast key; would not prevent forgery
 - Can protect contents of Beacon, Probe Response later on in order to detect forgery
- Handling of unauthenticated management frames
 - STA can discard unauthenticated Deauthenticate message
- Alternatives
 - Custom MIC
 - Requires change to key hierarchy
 - Low performance
 - TKIP/WRAP applied to MPDU
 - No change required to key hierarchy
 - High performance
 - Requires changes to ciphers

Protection of Control Frames

- Similar issues to management frame protection but fewer options
 - Control frames are higher bandwidth
 - Performance penalty of not reusing TKIP and WRAP ciphersuites is prohibitive
 - Custom MIC not a viable option
- Conclusion
 - For control frame protection, need ciphersuites operating on MPDU

Threats Addressed by Mgmt/Cntrl Protection

- Snooping, modification or injection of data packets
- Impersonation of legitimate 802.11 STA or AP
- Modification of authentication or control/management messages
- Injection of forged authentication or control/management messages
- Denial of service, including resource starvation
- Disruption of security negotiations
 - Capabilities advertisement
 - Ciphersuite or authentication negotiation

Protected Negotiations

- Ciphersuite negotiation
 - Ciphersuite negotiation needs to occur before ciphersuites are used
 - If ciphersuite used to protect management messages, then negotiation needs to occur prior to Association/Reassociation Request/Response
 - Alternatives
 - Authenticated Association/Reassociation Request/Response
 - Too late if Assoc/Reassoc protected by TKIP or WRAP ciphersuite
 - 4-way handshake
 - Early in conversation
 - Specific to 802.11
 - EAP
 - Need to create new EAP method to handle thise
 - Requires support for multiple media (PPP, 802.11, etc.)
- Authentication negotiation
 - Handled by EAP protection method

Threats Addressed by Protected Negotiation

- Snooping, modification or injection of data packets
- Impersonation of legitimate 802.11 STA or AP
- Modification of authentication or control/management messages
- Injection of forged authentication or control/management messages
- Denial of service, including resource starvation
- Disruption of security negotiations
 - Capabilities advertisement
 - Ciphersuite or authentication negotiation

Key Activation

- Determines when "FC" WEP bit can be set to true
- Alternatives
 - 4-way handshake
 - Enables "FC" WEP bit to be turned on prior to completion of EAP exchange (e.g. to cover Success/Failure frames
 - Authenticated Association/Reassociation exchange
 - "FC" WEP bit only turned on in "associated" pre-auth
 - EAP protection required
 - Used to activate keys in 802.11-1999

Summary

Threat	Mitigation alternatives
Authentication	802.1X pre-authentication 802.1X post-authentication
Protected capabilities negotiation	4-way handshake EAP Authenticated Association/Reassociation
Key activation	4-way handshake Authenticated Association/Reassociation
Management frame authentication	Ciphers operating over MPDU Authenticator Information Element
Control frame authentication	Ciphers operating over MPDU

Feedback?

