

Rev 0.1 8/12/2004 5:48 PM

 Secure multicast transport

Mick Seaman

This note discusses the mechanisms that secure the distribution of keys
in KSP [1]. These mechanisms can also support other multicast
protocols. Performance related aspects of parts of the KSP design are
also discussed in [2].

Two-party protocol
Consider the well-known protocol
 SA → {A, RA}M (2-1)
 SB → {B, RB, A, RA}M (2-2)

 SA: K = RA ⊕ RB (2-3)1
 SA → {A, RA, B, RB}M (2-4)
 SB: K = RB ⊕ RA (2-5)
or one of its close relatives.
In this protocol, stations SA and SB exchange
random numbers RA and RB to establish a
common pair-wise key, K. Each of the
messages is protected by a master key M. If that
key has only been entrusted to parties that can
be trusted to operate the protocol correctly, then
the protocol:
a) proves mutual possession of the master key
b) proves liveness, i.e. the stations possessing

the key are operational
c) results in a shared key, that can be used to

protect subsequent communication between
SA and SB.

The subsequent communication could itself be
used to protect the exchange of further keying
material. However for this communication to be
generally robust, it needs to be protected
against attacks that misorder or replay
messages. This can be simply done by the
addition of a sequence number, initialized to
zero or one when the nonce R is chosen, to
each message. So the communication might
proceed as follows:
 SB → {A, B, NB, DB}K (2-6a)
 SA → {B, A, NA, DA}K (2-7a)
Here the symbol N is used to denote each
sequence number. The data exchanged is D.
If proof of ongoing timeliness of this
conversation is required, to protect against an
attacker delaying data to disrupt the operation of
a configuration protocol, this can be easily
achieved by each of the stations reflecting back
the last N value received from the other:
 SB → {A, NA-, B, NB, DB}K (2-6)
 SA → {B, NB, A, NA, DA}K (2-7)
Some of the data D may be reflected as well, but
that is outside the scope of this discussion.

1 The symbol ⊕ denotes ‘exclusive-or’

N-party protocol
It is clear from the basic two-party protocol that
knowledge of the variables RA and RB is
sufficient to derive K, while possession of K
implies possession of M. So, assuming that any
attacker has full control of the communication
channel and a transcript of all past messages,
the message
 { ... }K (i)
with message body “...” is equivalent, from the
point of view of protection and authentication of
communication between SA and SB, to the
message
 { RA, RB, ... }M (ii)

up to the point that there is a risk of key M
having been used too many times.
Likewise, the message
 { NA, NB, ... }K (iii)
is equivalent to
 { RA, NA, RB, NB, ... }M (iv)
The objective of the KSP’s multicast key
distribution mechanisms is to replace multiple
two-party exchanges, between a number of
stations, with a multicast exchange, thus using a
protocol that is O(n) in the number of messages
sent rather than O(n2) – n being the number of
participating stations. If, for example, there are
three participating stations, SA, SB, and SC then
instead of using the two party protocol to derive
 KAB = RAB ⊕ RBA
 KBC = RBC ⊕ RBC
 KCA = RCA ⊕ RAC

and then sending messages
 {A, NA, B, NB,... }KAB
 {A, NA, C, NC,... }KAC
 {B, NB, A, NA,... }KAB
 {B, NB, C, NB,... }KBC
 {C, NC, A, NA,... }KAC
 {C, NC, B, NB,... }KBC

the n-party protocol establishes RA, RB, and RC,
and sends messages of the form
 {A, RA, NA, RB, NB, RC, NC,... }M

 {B, RA, NA, RB, NB, RC, NC,... }M

Rev 0.1 8/12/2004 5:48 PM 2

 {C, RA, NA, RB, NB, RC, NC,... }M
The gain in simplicity over a protocol that
attempts to reconstruct multicast capability from
n-way point to point dialogue is actually greater
than appears from simply counting the
messages required to convey fixed data, as
anyone who has attempted this general
conversion knows. In practice a restriction to the
use of point-to-point secure capabilities is
probably better handled by accepting the
complexity and performance impact of electing a
designated station, which then allows an O(n)
protocol solution.
To allow a straight forward comparison between
the n-party and two-party protocols, it is
convenient to examine the former as supporting
a contributory key agreement protocol, as the
two party protocol does, rather than as a
transport for key distribution. For three parties:
 SA → {A, RA, NA }M (n-1A)
 SB → {B, RB, NB }M (n-1B)
 SC → {C, RC, NC }M (n-1C)
 SA → {A, RA, NA+, RB, NB, RC, NC }M (n-2A)
 SB → {B, RA, NA, RB, NB+, RC, NC }M (n-2B)
 SC → {C, RA, NA, RB, NB, RC, NC+ }M (n-2C)

 SA: KB = RA ⊕ RB ⊕ RC (n-3A.B)
 SA: KC = RA ⊕ RB ⊕ RC (n-3A.C)
 SB: KA = RA ⊕ RB ⊕ RC (n-3B.A)
 SB: KC = RA ⊕ RB ⊕ RC (n-3B.C)

 SC: KA = RA ⊕ RB ⊕ RC (n-3C.A)
 SC: KB = RA ⊕ RB ⊕ RC (n-3C.B)
and as a result of execution of the protocol not
only do SA, SB, and SC have the same values for
the keys KA, KB, and KC to be used for data
transmission, but KA = KB, = KC.
It is of course unlikely that the protocol, in the
absence of a master clock and station
synchronization – neither of which is naturally
available on a LAN, would result in a sequence
of messages so neatly organized into two
rounds of transmission followed by the key
calculations. This doesn’t matter: the
calculations of KA at (n-3B.A) and (n-3C.A) only
depend on receipt of the message sent at (n-
2A), and similar observations apply to the
calculations of KB and KC.
The conditions for assigning values to keys in
this protocol are the same as, and serve to
illustrate, the conditions for accepting data
conveyed by the more general application of the
protocol. A station SX only accepts data from a
station SY if that is transported in a message
that:
a) contains RX and an acceptably recent NX 2

2 I don’t believe checking NX is required if proof of timeliness of
data delivery is not an objective. I don’t believe that there is any
requirement to verify that the NX received is at least as recent as
any other NX parroted back from SY, though caution may be
required to ensure that this is not implied by a proof.

and
b) if a message containing RY has previously

been received, then NY is greater than the
NY received in that previous message3.

Of course the same conditions cannot be
applied to recording a received RY, NY tuple for
inclusion in subsequent messages, or the
protocol would never get started. In this case the
appropriate checks are simply that either
a) there is no existing record of RY
or
b) NY is greater than that currently recorded

for RY.
It is worth noting in passing that although KSP is
deliberately based on key selection and
distribution, rather than on contributory key
agreement, and thus uses the N-party protocol
describe here purely as a secure multicast
transport, the use of a contributory key
agreement protocol based on the foregoing
description may just meet our goals for
MACsec4, and may be somewhat easier to
prove secure. In any case it is always nice to
have realistic alternatives to spur examination of
assumptions. I believe some improvements are
required for the result to be satisfactorily robust,
but that can be achieved without diminishing the
security properties of the basic N-party protocol
just described5 6.

KSP Terminology and Design
It should be readily apparent that the foregoing
is a explanation of how the distribution of keys is
secured in KSP, rather than a description of the
KSP design process. Hopefully the explanation
will make the design more intelligible to those
familiar with the two-party key exchange
protocol7. There follows a description of the
correspondence between the above terminology
and that used in KSP [1]. This description
naturally leads into a summary of the design
approach actually used to develop the key
transport component of KSP.
In KSP, each of the random values R is referred
to as an “Member Identifier”, MI, and the
corresponding N value as the “Member Age”,
MA. The latter reflects the fact that the MA
values are incremented with reference to a local
clock so it is easy for a station SX to determine
whether a reflect value of MAX by SY guarantees

3 Implementation of the timeliness check on NX helps here as it
limits the time for which a record of receipt of RY needs to be
retained.
4 I think KSP can scale to more participants, but KAP (Key
Agreement Protocol) may prove adequate for providing bridging
requirements.
5 And that this contention is itself easy to prove.
6 [3] provides some food for thought.
7 I should acknowledge the very useful discussion with John Viega
at the Portland meeting , which encouraged me to write this note.
However the claims and presentation here, together with any
deficiencies, are my own fault.

Rev 0.1 8/12/2004 5:48 PM 3

that the message from SY has been delivered
without undue delay.
The design philosophy of KSP is that each
participating station participates within the
protocol as an “instance” of itself, the duration of
the instance representing a continuous period
during which the station can remember both its
“Instance identifier” (“member identifier”) and all
values derived from or subordinate to that
instance. Instance identifiers are chosen at
random, and a new identifier is always chosen
after a station has been reset and usually after
each time that station powers up. A new
instance identifier is also chosen if any of the
number spaces derived from or related to the
instance identifier is exhausted or close to
exhaustion8. Instance identifiers, i.e. member
identifiers, are chosen from a space so large
that they are vanishingly unlikely to be reused by
accident.
A newly chosen member identifier, MI, together
with the space of all possible “member ages”
(“instance ages”), MA, and a given master key
M represents a set of problems, i.e. encryption
or integrity protection of a message containing
the tuple MI, MA with the key M, that are
deemed to be practically impossible (from the
protocol’s point of view) unless the station
solving the problem possesses key M.
No station SY, possessing M and executing the
protocol correctly9, includes an MIX, MAX where
MIX ≠ MIY in a message before it has received
that MIX, MAX in a message from another
station. Given the size of the MIX number space
we are justified, within the probabilistic
guarantees provided by the protocol, in
assuming that MIX ≠ MIY if SX ≠ SY. Hence if SX
transmits MIX, MAX tuples in MAX order, and
receives an MIX, MAXn tuple in a message, with
a value of MAXn not transmitted by SX earlier
than a known time before the current value of
MAX, then SX can be sure the message was
transmitted by a station possessing M within the
interval between that time and the time of
receipt. Because KSP is idempotent in respect
of the further data carried in protocol messages,
that is a sufficient security guarantee.
However the guarantee can be tightened,
without additional message fields, by
considering the receipt of pairs of tuples MIX,
MAX ; MIY, MAY by SX from (or apparently from)
SY and not only applying the timeliness check to
but also requiring the values of MAX and MAY to
be not less than the values of those variables in

8 Although those number spaces may be exceedingly large and
thus almost “impossible” to exhaust, sound protocol design
requires that the protocol recover from any state (whether thought
impossible or not) to a known state following a known bounded
time during which all messages conform to the protocol and are
received by their intended recipients. Reusing an instance
identifier ensures that this rule is not broken by the possibility of
an exhausted space.
9 Correctness of any instance of KSP depends on all members
possessing M and participating in that instance executing the
protocol correctly.

any prior message containing MIX and MIY. This
tighter guarantee protects the rest of KSP from
replay attacks.
In KSP the station identifiers, referred to as A, B,
C, .. in the protocol descriptions above, are
actually the Secure Channel Identifiers (SCIs)
used in the MACsec protocol. Since MIY
(corresponding to RY above) does not appear in
the MACsec data frames transmitted by SY, and
the key used by SY could for a period differ from
the key used by some SZ, it is necessary to bind
MIY to SCIY. Obviously, in line with the
guarantees above, a station SX wishing to
receive from SY does not perform that binding
unless the binding has been received in a
protected message purportedly from the station
with MIY and SCIY and meeting the MIX and MIY
guarantees described above.

References and background
[1] A distributed fault-tolerant group key
selection protocol for MACsec.
KeySelectionProtocol-seaman-v03.pdf

[2] Mick Seaman. Key exchange with packet
loss, delay, and misordering.

[3] Steiner, Tsudik, Waidner. Key Agreement in
Dynamic Peer Groups. See particularly section
2.
http://citeseer.ist.psu.edu/cache/papers/cs/...stei
ner00key.pdf

