Key Management for Link Layer Security

Kwangjo Kim*, Hyunrok Lee*, Taehwan Yoo**, Jeesook Eun**

Information and Communications University (ICU) * Electronics and Telecommunications Research Institute (ETRI) **

Content

- 802.11i overview
- Proposed Key management
- Authentication
- Mobility
- Ensuring mobility

802.11i - Overview

(1/2)

- Confirmed Standard 2004.6.24
- Data Security (Key Management/Crypto Algorithm)
 - IEEE 802.1aa
 - Accept 802.11i Key Descriptor
 - Define Key exchange state machine
 - IEEE 802.11i
 - RSN (Robust Security Network)
 - Access control based on 802.1X
 - Dynamic Key Exchange and Management
 - New Crypto Algorithm
 - TKIP For backward compatibility (WEP)
 - CCMP AES-CCM mode

802.11i - Overview

(2/2)

User Authentication

- IEEE 802.1X
 - Port-Based Network Access Control
 - Before authentication: uncontrolled port After authentication: controlled port open
- IEEE 802.1aa
 - Extra document for 802.1X
 - After authentication and Key exchange: controlled port open
- EAP (Extensible Authentication Protocol)
 - Various authentication mechanism will be acceptable
 - EAP-MD5, EAP-TLS, EAP-TTLS
- AAA (Authentication, Authorization and Accounting) Server
 - RADIUS (Remote Authentication Dial In User Service) Server
 RFC 2865
 - Diameter Server
 - RFC 3588

IEEE 802.11i - Authentication

IEEE 802.11i - Authentication & Key Exchange

Authentication Server PMK

Internet

Authentication Protocol EAP-TLS
PMK Agreement on EAP-TLS

AAA Protocol: RADIUS/DIAMETER
PMK Transmitted by AAA
EAP-TLS Transmitted bye AAA

Access Control: 802.1x/802.1aa MAC security: WPA/802.11i 802.1aa transmit EAP-TLS WPA/802.11i uses PTK Access Point

PMK

→ PTK

802.11i - Pairwise Key Hierarchy

Key Confirmation Key (KCK)-PTK bits 0-127 Key Encryption Key (KEK)-PTK bits 128-255 Temporal Key -PTK bits 256-*n* – can have cipher suite specific structure

802.11i – Key Management

Step1: Use RADIUS to push PMK from AS to AP

Step2: Use PMK and 4-way Handshake to derive, bind, and verify PTK

~······

Step 3: Use Group Key Handshake to send GTK from AP to STA

Proposed Key Management

- DISCOVERY
- Key Hierarchy
- Key Exchange with verification

DISCOVERY

- Cannot avoid this process!!
- Following factors should be configured before operation.
 - Is there any valid MACsec module?
 - Where is Cryptography function?
 - Tx only? Rx only? Both possible?
 - What is Cryptography algorithm?
 - GCM-AES-128,CCM-AES-128,OCB-AES-128,RSA?
 - What is Key distribution algorithm?
 - Diffie-Hellman?
 - And so on...

Key Hierarchy

•SP : Supplicant

AUTH : Authenticator

Master Key (MK) - Pre-configured Key (Symmetric Key)

Pairwise Master Key (PMK) =PRF(MK|SP_Hello.random|AUTH_Hello.random)

Pairwise Transient Key (PTK)

=PRF(PMK, AUTH Nonce|SP Nonce|AUTH MAC Addr|SP MAC Addr)

0

Key Confirmation Key (KCK)-PTK bits 0-127 Key Encryption Key (KEK)-PTK bits 128-255 Temporal Key -PTK bits 256-*n* – can have cipher suite specific structure

Authentication

•SP : Supplicant

AUTH: Authenticator

- 802.1x is so bulky for Layer 2 Authentication
- Using Pairwise Mater Key (PMK)
 - Make it Simple

Key Exchange with verification

Mobility

Glossary

 In the networks, the ability of a terminal, while in motion, to access telecommunication services from different locations, and the capability of the network to identify and locate that terminal.

Considerations

- Wireless Supplicant always needs mobility
- Wired Supplicant
 - Frequency
 - Scope
 - Bridge to Bridge
 - Over the local area

Ensuring Mobility

(1/2)

Requirements

- Require a system whose role works like Authentication Server (AS)
- Guarantee communication channel with Layer 2 protocol

Possible Models

- Back-end [1]
 - Relay role between Supplicant (SP) and AS
 - Watch the response from AS to SP → set controlled port
 - Whether SP includes Authenticator Address information or not
 - The key distribution protocol for making AS know SP's
- Authenticator (AUTH) + AS [2]
 - Subject of authentication : AUTH
 - Protocol for finding the authentication information of SP
 - Broadcast
 - Query with Destination MAC Address
- Assumptions
 - globally unique MAC address
 - AS (or AUTH) maintains master key information table between SP address and AUTH address
 - Pre-established secure channel among AS (or AUTH)

Ensuring Mobility

(2/2)

- Further works
 - → Key Management to support mobility

Thank you for your attention Q&A

