

Rev. 0.9 11/6/2004 1:28 PM 1

 MRP State Machines

Mick Seaman

This note proposes Applicant and Registrar state machines for
MRP and MVRPa. These provide the support necessary to limit
the effect of topology changes to S-VLANs whose underlying
connectivity has changedb, for rapid point-to-point operation, and
to reduce the number of PDUs for large numbers of attributes.
These machines provide efficient point-to-point and shared
media operation when operPointToPointMAC is correctly
configured, and correct (but noisy) operation when it is not. They
accommodate more attributes than can be packed in a single
frame, though all 4096 VLANs can be accommodate within 1024
octets for point-to-point operation.

Protocol Components
For each MRP Application, MRP comprises an
Attribute Declaration (MAD) component for each
Port, an Attribute Propagation (MAP)
component for each Attribute Propagation
Context, and the MRP Application components
proper. These correspond to GID, GIP, GIP
Context, and GARP Applications for GARP1 as
illustrated in 802.1D-2004 Figure 12-4.
This note includes two equivalent specifications
of the MAD component. The first uses protocol
variables (and may be an easier introduction),
and the second conventional state tables (and is
easier to check for completeness and
correctness). Events and actions are the same
for both alternatives.

Topology change signaling
To communicate topology changes for MVRP,
MRP itself provides change (or more specifically
new registration) signaling for attributes2. This
signaling can be used by other applications that
require an efficient mechanism for indicating the
arrival of new registrants. To simplify discussion
of this capability, this note may occasionally blur
the distinction between MVRP and MRP.

a The proposed PAR for the work can be found at
../docs2004/802-1ai-draft-par-for-30-day-rule.htm
with background information in
nfinn-vectorized-garp.zip
and earlier introductory material in
MVRP-Introduction-030.pdf
though the proposed topology change mechanism is differs.
b As opposed to flushing learnt addresses for a VLAN as a result
of changes in part of its spanning tree not used by that VLAN.
1 Apart from aligning with the GARP to MRP name change, the
new names identify that the functionality is slightly different.
2 Of course signaling of a new registration has to be propagated
through LANs where the declaration has already been made,
arriving possibly through a different bridge port, which is why it is
an addition to the protocol’s capabilities.

Point-to-point operation
GARP was designed3 principally to meet the
challenges of effective operation on shared
media. While an important role remains for
virtual shared media over point-to-point LANS,
MRP can take advantage of three major points
to speed point to point operation.
First, for shared media with many participants it
is necessary to jitter timers, whereas for point-
to-point, one PDU can be sent immediately, with
rate limiting then imposed to space subsequent
transmissions as discussed below.
Second, since each point-to-point participant
only has one peer, it is unnecessary for the
Registrar to delay a transition to the
unregistered state. Unwanted declarations can
be removed immediately.
Third, which is easy to miss, the purpose of
advertising the Registrar state in attribute
messages is not to provide an acknowledged
protocol. Once the ‘channel’, i.e. buffering,
reception, scheduling, and transmission delays,
between protocol participants is accounted for
there is little gain from using the Registrar state
in this way. Rather, the Registrar state is
provided so that one Applicant can observe and
if necessary compensate for the effects of
others making and withdrawing applications.
There are no ‘others’ on point-to-point LANs.
MRP takes advantage of this, using a reduced
set of messages and simpler operation for point-
to-point, while avoiding the messy effects of a
‘mode-switch’ if another participant attaches to
virtual media and ‘thrashing’ if the point-to-point
designation is incorrect4.

3 In an era when widespread use of on demand video on LANs
was anticipated, but most of the end stations were attached to
repeaters, not bridges.
4 Looking forward to the next “buffered repeater”.

Rev.0.9 11/6/04 1:28 PM 2

Protocol messages
Each MRP participant send ‘messages’, each
conveying for a specific attribute:
• the Applicant state – ‘Join’ for declaring the

attribute, and its opposite ‘ ’
• any change in a declaration – ‘New’ for a

change to ‘Join’ (either directly or
propagated), ‘Leave’ for a change to
withdraw the declaration

• the Registrar state – ‘In’ if the attribute is
registered5, ‘Mt’ (empty) otherwise.

MRP uses the following message types:
• NewIn, NewMt6
• JoinIn, JoinMt
• Lv7
• Mt
• Null – facilitates compact encoding8
On point-to point-media there is no need to
distinguish ‘Leave’ from the applicant state ‘ ’,
nor to include the Registrar state, so the
following reduced set of messages is used:
• New
• Join
• Lv
• Null
The Null message is not necessary for point-to-
point, but provides interoperability with shared
media operation, mitigating misconfiguration.
Periodically MRP participants send messages to
‘garbage collect’ declarations that have been
withdrawn, but are still registered due to
exceptional message loss, and to ensure that
loss of declarations does not similarly lead to
persistent lack of registration. Shared media
participants send LeaveAll (LA) messages that
cause new declarations to be made by all
participants9. Point-to-point participants send
LeaveMine (LM) messages. Other participant(s)
registrations are aged for only a short while after
receipt of a LeaveMine10, to allow redeclaration
of attributes that would not fit into the PDU.

5 To be exact ‘In’ is only signalled if the Registrar is in the ‘IN’
state, and ‘Mt’ if the Registrar state is ‘LV’ or ‘MT’.
6 GARP does not provide new registration signaling and hence
does not use NewIn and NewEmpty.
7 LeaveIn and LeaveEmpty could be distinguished, but that serves
little purpose.
8 Not only is there little purpose to an explicit ‘In’ message, but
when sent = 2 sending JoinIn is actually to be avoided.
9 Subject of course to the normal mechanisms for suppressing
excess messages.
10 Use of the LeaveMine message means that a new ‘prompt’ like
mechanism and message type does not have to be introduced for
point-to-point to guard against the loss of a LeaveAll.

PDU Transmission
Transmission is organized as follows. Each
Applicant (one per attribute, per MAD
component) and the LeaveAll state machine
(one per MAD component) indicates a need to
transmit by requesting a transmit opportunity. A
state machine for the entire component then
provides the opportunity (finding a buffer etc.)
either immediately, or imposing a time delay as
required to provide jitter and rate limiting. If a
future opportunity has already been scheduled,
there is no need for another. Thus only one
timer and few counters are required per Port.
It is possible that a single PDU is insufficient to
accommodate all the messages to be
transmitted. In this specification the passing of a
transmit opportunity is an event, allowing
participants to request a further opportunity.

Protocol events
• Begin! – initialize for this attribute
• New! – A new declaration
• Join! – without signaling new registration
• Lv! – Withdraw a declaration
• tx! – Transmission opportunity without

 a LeaveAll or LeaveMine11
• txLA! txLM! – with a LeaveAll, LeaveMine
• txF! txLAF! txLM! – with no room, F(ull)
• rNew! rNewIn! rNewMt!

rJoin! rJoinIn! rJoinMt!
rLv!
rMt!
rNull!
rLA! rLM! rLI! – protocol message receipt

Protocol actions
• New, Join, Lv – indications to MAP and

the MRP application
• ntt – need to transmit, also referred to

as request transmit opportunity
• sN – send a New message (on a point-

to-point LAN), or a NewIn or NewEmpty
message (on shared media) as
determined by the Registrar

• sJ – send a Join, JoinIn, or JoinMt
• sL, sE – send a Lv, send Mt
• [s] – send a Null if required for encoding

11 LeaveAlls are always encoded before messages for specific
attributes. GARP does not distinguish tx from txLA, so the LO
state that guards against message loss for attribute redeclaration
may not when the Empty ‘prompt’ is encoded in the same PDU.

Rev.0.9 11/6/04 1:28 PM 3

Applicant protocol variables
Each MRP Applicant’s operation can be
specified using the following protocol variables:

• member - true/false
• active - true/false
• change - true/false
• sent - 0, 1, 2

together with the condition
• p2p - true/false

Table 1 and Table 2 show the correspondence
between these variables and states suitable for
a state table description for shared media and
point-to-point operation respectively.

Variable VC AC VA AA QA VP AP QP LA LO VO AO QO
member T T T T T T T T F F F F F
active T T T T T F F F T F F F F
change T T F F F F F F -x- T F F F
sent 0 1 0 1 2 0 1 2 -x- 0 0 1 2
Table 1 – MAD Applicant protocol variables and shared media operation states

Variable VC AC VA AA QA LA LO VO
member T T T T T F F F
active T T T T T T F F
change T T F F F -x- T F
sent 0 1 0 1 2 -x- 0 0

Table 2 – MAD Applicant protocol variables and point-to-point operation states

Example Code
The following code implements an Applicant capable of receiving messages from participants that believe
themselves attached to either point-to-point or shared media, with any number of each type participating
at the same time. The Applicant’s own behavior is determined by the p2p variable. Note that txLA! and
txLAFull! events will not occur if p2p is true, and txLM! and txLMFull! will not if it is false. The (possibly
transient) condition that requires a message to be encoded for an attribute to satisfy some aspect of
compact message encoding is denoted by the variable ‘encode’, and sending a Null, In, or Empty by s().

State Table Specification
An equivalent state table description follows the code (Table 3). In case of any discrepancy the state
table takes precedence. The differences between Table 3 and Table 12-3 of 802.1D-2004 for events they
have in common are:

1. Table 12-3 contains entries for both LeaveIn and LeaveEmpty, which leads to differences for the
VA, AA, QA and LA states. The most conservative of the next state selections is used in Table 3,
i.e. VA for VA, AA, and QA, and LA for LA.

2. Table 12-3 LA state transitions straight to the VO state on receipt of a LeaveAll instead of going
to LO first. This skips out the prompting effect of sending an “Empty” in the LO state, which is
required for successful operation of an Applicant misconfigured for point-to-point operation when
attached to shared media.

Rev.0.9 11/6/04 1:28 PM 4

• Begin! member = active = change = false; sent = 0;
• New! if (!(member && change)) { member = active = change = true; sent = 0; ntt();};
• Join! if (!member) { member = true; change = false; if (sent < 2) ntt();};
• Lv! if (member) { member = false; if (active) ntt();};
• tx! if (member && change) { sN(); sent++; if (sent = = 2) change = false; else ntt();}
 else if (member) { if (sent < 2) { sJ()); active = true; sent ++; if (sent < 2) ntt();}
 else if (encode && active) sJ(); else if (encode) s();};}
 else if (active) { sL(); active = false; change = true; sent = 0; ntt();}
 else if (change) { if (p2p) sL() else sE(); change = false;}
 else { if (encode) s()};
• txLM! if (member && change) { sN(); sent++; if (sent = = 2) change = false; else ntt();}
 txLA! else if (member) { sJ()); active = true; if (sent < 2) sent ++; if (sent < 2) ntt();}
 else if (active) { if (encode) s(); active = false; change = true; sent = 0; ntt();}
 else if (change) { if (encode) s(); change = false;}
 else { if (encode) s(); if (txLA!) { change = true; ntt();};};
• txF! if ((member && (sent < 2)) || (active && !member) || change) ntt();
• txLAF! if (member) { sent = 0; ntt();}
 txLMF! else if (active) { active = false; change = true; ntt();}
 else { change = false;};
• rNew, rJoin, rNull, rLv! && p2p, rLM! && p2p, rLI! && p2p // do nothing
• rNewIn! if (member && change) { /*do nothing */ }
 rJoinIn! else if (active && !member) { /*do nothing */ }
 else { if (sent < 2)) sent++;};
• rNewMt! sent = 0;
 rJoinMt! if (member) { ntt();};
 rMt! else if (active) { if (rNewMt! || rJoinMt!) active = false;}
 rLv! && !p2p else if (change) { change = false;}
 rLM! && !p2p else if (rLv! || rLM!) { if (!p2p) { change = true; ntt();};};
• rLA! sent = 0;
 if (member && change) { /* do nothing more */
 else if (member) { active = false; change = true; ntt();}
 else { change = true;};

Event/State VC AC VA AA QA VP AP QP LA LO VO AO QO
Begin! VO VO VO VO VO VO VO VO VO VO VO VO VO
New! -x- -x- VC VC VC VC VC VC VC VC VC VC VC
Join! -x- -x- -x- -x- -x- -x- -x- -x- VA VP VP AP QP
Lv! LA LA LA LA LA VO AO QO -x- -x- -x- -x- -x-
tx! && p2p sN

AC
sN
QA

sJ
AA

sJ
QA

[sJ]
QA

sJ
AA

sJ
QA

[s]
QA

sL
LO

sL
VO

[s]
-x-

[s]
-x-

[s]
-x-

tx! && !p2p sN
AC

sN
QA

sJ
AA

sJ
QA

[sJ]
QA

sJ
AA

sJ
QA

[s]
QA

sL
LO

sE
VO

[s]
-x-

[s]
-x-

[s]
-x-

txLM! sN
AC

sN
QA

sJ
AA

sJ
QA

sJ
QA

sJ
AA

sJ
QA

[s]
QA

sL
LO

[sL]
VO

[s]
-x-

[s]
-x-

[s]
-x-

txLA! sN
AC

sN
QA

sJ
AA

sJ
QA

sJ
QA

sJ
AA

sJ
QA

[s]
QA

sL
LO

[s]
VO

[s]
LO

[s]
LO

[s]
LO

txF! VC AC VA AA -x- VP AP -x- LA LO -x- -x- -x-
txLAF! VC VC VA VA VA VP VP VP LO VO -x- -x- -x-
txLMF! VC VC VA VA VA VP VP VP LA LO -x- -x- -x-
rNewIn! rJoinIn! -x- -x- AA QA -x- AP QP -x- -x- AO AO QO -x-
rNewMt! rJoinMt! -x- VC -x- VA VA -x- VP VP VO VO VO VO VO
rMt! -x- VC -x- VA VA -x- VP VP LA VO VO VO VO
rLv! rLM! && !p2p -x- VC -x- VA VA -x- VP VP LA VO LO LO LO
rLA! -x- VC VP VP VP -x- VP VP LO VO LO LO LO

Note – ntt on entry/re-entry to VC, AC, VA, AA, LA, VP, AP, and LO states.
Note – rNew, rJoin, rNull, rLv! && p2p, rLM! && p2p not shown, no action taken.

Table 3 – Bi-media Applicant state machine

Rev.0.9 11/6/04 1:28 PM 5

A point-to-point subset
Table 4 is illustrates the behavior of a MAD Applicant configured for point-to-point operation and
connected to another similarly configured. Equivalent code follows.

Event/State VC AC VA AA QA VP AP QP LA LO VO
Begin! VO VO VO VO VO VO VO VO VO VO VO
New! -x- -x- VC VC VC VC VC VC VC VC VC
Join! -x- -x- -x- -x- -x- -x- -x- -x- VA VP VP
Lv! LA LA LA LA LA VO AO QO -x- -x- -x-
tx! sN

AC
sN
QA

sJ
AA

sJ
QA

[sJ]
QA

sJ
AA

sJ
QA

[s]
QA

sL
LO

sL
VO

[s]
-x-

txLM! sN
AC

sN
QA

sJ
AA

sJ
QA

sJ
QA

sJ
AA

sJ
QA

[s]
QA

sL
LO

[s]
VO

[s]
-x-

txF! VC AC VA AA -x- VP AP -x- LA LO -x-
txLMF! VC VC VA VA VA VP VP VP LO VO -x-

Table 4 – Point-to-point state machine
• Begin! member = active = change = false; sent = 0;
• New! if (!(member && change)) { member = active = change = true; sent = 0; ntt();};
• Join! if (!member) { member = true; change = false; if (sent < 2) ntt();};
• Lv! if (member) { member = false; if (active) ntt();};
• tx! if (member && change) { sN(); sent++; if (sent = = 2) change = false; else ntt();}
 else if (member) { if (sent < 2) { sJ()); active = true; sent ++; if (sent < 2) ntt();}
 else if (encode && active) sJ(); else if (encode) s();};}
 else if (active) { sL(); active = false; change = true; sent = 0; ntt();}
 else if (change) { sL(); change = false;}
 else { if (encode) s()};
• txLM! if (member && change) { sN(); sent++; if (sent = = 2) change = false; else ntt();}
 else if (member) { sJ()); active = true; if (sent < 2) sent ++; if (sent < 2) ntt();}
 else if (active) { if (encode) s(); active = false; change = true; sent = 0; ntt();}
 else if (change) { if (encode) s(); change = false;}
 else { if (encode) s();};
• txF! if ((member && (sent < 2)) || (active && !member) || change) ntt();
• txLMF! if (member) { sent = 0; ntt();}
 else if (active) { active = false; change = true; ntt();}
 else { change = false;};
• rNew, rJoin, rNull, rLv! && p2p, rLM! && p2p // do nothing

The MAD Registrar
When operPointToPointMAC is false, the
Registrar operates as specified in 802.1D-2004,
with the addition of new registration signaling.
When attached to a point-to-point LAN, receipt
of an explicit Leave message result in a Leave
indication immediately. See Table 5 below.

LeaveAll and Leave Mine machines
Each MAD component (one per Port) has a
single Leave All state machine, based on the
specification in 802.1D-2004 Table 12-5 and
extended to include sending LeaveMine
messages. See Table 6 below.

.

Rev. 0.9 11/6/2004 1:28 PM 6

Event/State IN LV MT
Begin! MT MT MT
rNew!
rNewIn!
rNewMt!

New
IN

New
Stop leavetimer
IN

New
IN

rJoin!
rJoinIn!
rJoinMt!

IN

Stop leavetimer
IN

Join
IN

rLv! && !p2p Start leavetimer
LV

-x- -x-

rLv! && p2p Lv
MT

Lv
MT

-x-

rLM!
rLA!
txLA!

Start leavetimer
LV

-x- MT

leavetimer! -x- Lv
MT

MT

Table 5 – MAD Registrar state machine

Note – rMt!, rNull, txLM! not shown, no action taken.

Event/State Active Passive
Begin! Start leaveall timer

Passive
Start leaveall timer
Passive

tx! && p2p sLM
Passive

-x-

tx! && !p2p sLA
Passive

-x-

rLA!

Start leaveall timer
Passive

Start leaveall timer
Passive

rLM! -x- -x-
leaveall timer! Start leaveall timer

Active
Start leaveall timer
Active

Note – Starting the leaveall timer implies restarting it, if already running. Transmit and reception events that do not
affect this machine are not specified.

Table 6 – Leave All state machine

