

>THIS IS THE WAY

IEEE 802.1ah Update

Paul Bottorff, Editor 802.1ah May 9, 2005

>THIS IS NORTEL

Agenda

> Introduction

> Review

- Terminology
- Basic Operation
- > Frame Format Alternative
 - Formats from draft 1
 - Format identifier field proposal
 - Format mapping to I-Comp/B-Comp reference model
- > Reference Model Alternative
 - I-Comp/B-Comp reference model (Draft 1)
 - M-Comp reference model alternative
 - Revised I-Comp/B-Comp reference model

P802.1ah - Provider Backbone Bridges – Targeted Timeline

- Paul Bottorff, Chief Editor, pbottorf@nortel.com
- Ali Sajassi, Assistant Editor, sajassi@cisco.com
- Muneyoshi Suzuki, Assistant Editor, suzuki.muneyoshi@lab.ntt.co.jp

IEEE 802.1ah (Provider Backbone Bridge) Context

Draft 0.2 Content

- > Draft 0.2 available at: http://www.ieee802.org/1/pages/802.1ah.html
- > Much of P802.1ad is included within editor's notes
- > Added clauses 23, 24, and 25
 - Clause 23: Support of the MAC Service by Provider Backbone Bridged Networks
 - Clause 24: Principles of Provider Backbone Bridged network operation
 - Clause 25: Principles of Provider Backbone Bridge operation
- > Clause 1 contains some suggestions for scope
- > Clause 3/4 contains new Provider Backbone Bridge definitions and acronyms
- > Clause 9 contains I-TAG VCI format

Open items in Draft 0.2

- > Clause 5: Conformance statement
- > Clause 12: Management for PBB bridges
- > Clause 23:
 - Port based interface description
 - I-Frame based interface description
- > Clause 24:
 - Interaction of Provider Backbone Edge Bridges with Provider Bridge spanning trees
 - Operation of Provider Backbone Bridge spanning trees
- > Clause 25:
 - Details of I Component and B Component operation
 - Operation of address correlation data base
- > Informative annex on an integrated C-VLAN aware component

The Big Ticket Items for Draft 1.0

- > No format identifier specified for I & B formats
 - Could use multiple .1ah Ethertypes or format field in I-TAG
 - Additional formats are necessary to indicate a "naked" OAM frame
- > Current Dual Relay Model Issues
 - Externalized "naked" I-TAG interface (I-Format)
 - B-Comp is upside down
 - I-Comp to B-Comp relationship not 1-1
 - I Format not consistent with standard tag operations
 - Virtual MAC addressed by B-MAC is not clearified by draft 0.2
- > Draft 1 has only an S-TAG user interface
 - Could also support an untagged transparent interface
 - Extensions also allow embedding a C-VLAN aware component
 - Also the "naked" I-TAG interface could be externalized
- > Decoupling PBN and PBBN spanning tree is not described
 - Redundant PBB interface is not specified
 - Spanning tree handling for redundant PBB
- > Extended multicast pruning techniques are not described for PBBNs

Agenda

> Introduction

> Review

- Terminology
- Basic Operation
- > Frame Format Alternative
 - Formats from draft 1
 - Format identifier field proposal
 - Format mapping to I-Comp/B-Comp reference model
- > Reference Model Alternative
 - I-Comp/B-Comp reference model (Draft 1)
 - M-Comp reference model alternative
 - Revised I-Comp/B-Comp reference model

Agreed Terminology

- > IEEE 802.1ad Terminology
 - C-TAG Customer VLAN TAG
 - C-VLAN Customer VLAN
 - C-VID Customer VLAN ID
 - S-TAG Service VLAN TAG
 - S-VLAN Service VLAN
 - S-VID Service VLAN ID
- > Additional Provider Backbone Bridge Terminology
 - I-TAG Extended Service TAG
 - I-SID Extended Service ID
 - C-MAC Customer MAC Address
 - B-MAC Backbone MAC Address
 - B-VLAN Backbone VLAN (tunnel)
 - Backbone TAG Field
 - Backbone VLAN ID (tunnel)

•

B-TAG

B-VID

•

•

۲

More Terminology

- > CBN Customer Bridge Network
- >CB Customer Bridge
- > PBN Provider Bridge Network
- > PB Provider Bridge
- >PBBN Provider Backbone Bridge Network
- > PBB Provider Backbone Bridge

[•] **PBB**: Provider Backbone Bridge Edge

- Each B-VLAN carries many S-VLANs
- S-VLANs may be carried on a subset of a B-VLAN (i.e. all P-P S-VLANs could be carried on a single MP B-VLAN providing connection to all end points.

Combined 802.1ad and 802.1ah Network

Agenda

> Introduction

>Review

- Terminology
- Basic Operation

> Frame Format Alternative

- Formats from draft 0.2
- Format identifier field proposal
- Format mapping to I-Comp/B-Comp reference model
- > Reference Model Alternative
 - I-Comp/B-Comp reference model (Draft 1)
 - M-Comp reference model alternative
 - Revised I-Comp/B-Comp reference model

802.1ah Encapsulation Format

- 802.1ah Bridges encapsulate frames with a BBN header
- 802.1ah header contains
 - a) Extended Service identifier (I-SID)
 - Identifies the Provider Bridge S-VLAN within the BBN
 - Is carried within an I-TAG which is 32 bits long and identified by an 802.1ah Ethertype
 - Requires at least 2^20 bits to identify 1M services
 - Proposals for 2^20, 2^24, and 2^28 bits
 - b) Site Connectivity identifier (B-VID)
 - Identifies a B-VLAN (or tunnel) that is used to transport the BBN S-VLANs
 - Site connectivity (i.e., tunnel) can be point-to-point or multi-point in nature
 - B-VLAN is carried in a B-TAG with the 802.1ad Ethertype and S-TAG format
 - c) Backbone POP Address (B-MAC)

MAC Address for POPs within Site Connectivity

- 802.1ad Service VLAN IDs (S-VIDs) map to 802.1ah Extended Service IDs (I-SIDs)
 - PBN S-VIDs are local to the PBN
 - PBBN I-SIDs are local to the PBBN

Formats On PBBN Wires

B-TAG is identical to S-TAG and optional in the frame

I-TAG is optional in frame

CFM format is for management of a B-VLAN

"Naked" I-TAG Formats on I-B Link

No B-TAG present in these frames

I-TAG may also be absent in these formats

Proposal for I-TAG Format Field

> High order bit of FMT determines "I" Format or "B" Format

- > Low order bit of FMT determines FCS retention
- > RSV bits are for future use
- > Alternatively two Ethertypes would be required

Dual Relay PBB Model

Alternative For Naked I-TAG Format?

- > Pro for I-Format is minimum information between I&B Comp
- > Con for I-Format is B-Shim transformation is upside down
- > Pro for B-Format is B-Shim has a regular transformation
- > Con for B-Format is I-B link either exposes backbone address or uses dummy addresses

Agenda

> Introduction

>Review

- Terminology
- Basic Operation
- > Frame Format Alternative
 - Formats from draft 1
 - Format identifier field proposal
 - Format mapping to I-Comp/B-Comp reference model
- > Reference Model Alternative
 - I-Comp/B-Comp reference model (Draft 1)
 - M-Comp reference model alternative
 - Revised I-Comp/B-Comp reference model

Combined 802.1ad and 802.1ah Network

Customer Spanning Tree

Dual Relay PBB Model

Shims May Split Functions Anywhere

- > Entire yellow region may be considered a single shim with functions divided to either side of the interconnect
- > Splits moving functions toward the I-Comp move knowledge of the backbone topology into the PBN region
- > Current split moves most functions toward B-Comp maximizing information hiding

- > I to B Shim format "naked I-TAG" in I-Format
 - Minimum frame information between I-Shim and B-Shim
 - B-Shim transform is irrigular since I-TAG is moved in frame
 - B-Shim upside down since frame grows moving upward
- > I to B Shims are 1-1

> I-Shim function is very thin while B-Shim does most of work

> I to B Shim format "naked I-TAG" in B-Format

- B-DA is dummy field
- B-Shim transform is regular
- B-Shim right side up
- > I to B Shims are 1-1

> I-Shim function is thin while B-Shim does most of work

- > I to B Shim format "naked I-TAG" in B-Format
 - B-DA functions handled by I-Shim
 - B-Shim transform is regular
 - B-Shim right side up
- > I to B Shims are 1-1
- > I-Shim function is thick while B-Shim only handles B-TAG

PBBI&B Shim Alternatives 1-3

- > I and B Shim combined into an M-Shim
 - All functions contained in single shim
 - Model becomes a single relay model
 - Functions are right side up
 - Spanning tree splits in the middle of the relay
- > No middle level interface exposed by architecture

Alternative 5

- > I and B Shim combined into an M-Shim
 - All functions contained in single shim
 - Model becomes a single relay model
 - Functions are right side up
 - Spanning tree splits on link

> No middle level interface exposed by architecture

PBBI&B Shim Alternatives 5

- > I-Shim and B-Shim 1-1 connected
- > Single I-B Shim pair forms interconnect of PBN and PBBN
- > Spanning trees split between B-Comp to I-Comp
- > Implementation may be a single box or two boxes

> Interconnect of PBN and PBBN is between a PBB and a PB

> Spanning trees split between in middle of M relay

Redundant Interconnects: Alternatives 1-3

Demark

Demark

- > Class 1:
- Redundant Links and Non-redundant Switch
- > Class 2:
- > Redundant Links and Redundant Switches
- > Class 3:
- > Redundant Links and Mesh Connected Redundant Switches

Redundant Interconnects: Alternative 4

- > Class 1:
- Switch
- > Class 2:
- > Redundant Links and Non-redundant
 > Redundant Links and Redundant Switches
- > Class 3:
- > Probably outside model

Recommendations

- > Any of the reference models can work
- > The dual relays create internal frame format
- > Alternative 2 dual relay will provide regular frame transformations and right-side up operation
- > Alternative 4 is probably the simplest

>THIS IS THE WAY

Backup Slides

>THIS IS NORTEL

- > Ongoing work at IEEE 802.1ag, ITU SG13 Y.17ethoam, MEF
- > IEEE P802.1ag Service OAM flows at multiple levels.
- > Ethernet Service OAM allows multiple autonomous networks.

PBB Shim Functions

PBB Peer Model

Encapsulation Frame Header

• The B-TAG is identical to S-TAG and optional in the frame

Provider Network Example

Extended Service VLAN IDs In Backbone

- An I-SID uniquely identifies a S-VLAN within the Backbone
- The MAP Shim translates between S-VID and I-SID
- The I-SID to(from) S-VID mapping is provisioned when a new service instance is created

- > Regardless of the I-SID address size the map tables only have 4096 entries since only one I-SID exists per S-VLAN and only 4096 S-VLANs exist per Provider Bridge.
- > A different S-VID in each PBN maps to the I-SID

- > B-VLANs are addressed like regular VLANs with a 12 bit B-VID
- B-VID and I-SID need to be separate ID spaces to allow
 many S-VLANs to be carried in a single B-VLAN

- > B-MAC Addresses identify the Edge Provider Backbone Bridges (BB PB)
- > B-MAC Addresses are learned by other Edge Backbone Edge Bridges
- > The backbone edge MAC address determines which edge on the B-VLAN will receive the frame.
- > Frames may be flooded by sending with broadcast or multicasts DA B-MACs to the B-VLAN.
- > Map shims filter based on the I-SID removing any misaddressed frames

Customer/Provider Addresses

- > PB Relay Learns Customer Address Per S-VLAN
- > BB Relay Learns Provider Addresses Per B-VLAN
- > MAP Shims Learns Correlated Customer and Provider MAC Addresses per S-VLAN

Customer/Provider MAC Address Correlation

MAP Shim Correlation Table

- In the beginning the MAP Shim is provisioned with the correlation between the S-VID, I-SID, and B-VID
- > During operation the MAP Shim learns both B-MAC addresses and C-MAC addresses
- > The MAP Shim keeps track of which C-MAC addresses are behind which B-MAC
- > The correlation data is used to encapsulate frames from the PBNs

- > Customer spanning trees may extend over Provider Network
- > PB Network and BB Network spanning trees must be decoupled to scale the provider network
- > Provider Backbone Bridge may conform to the requirements for an Interconnect Medium

