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This note describes a Key Selection Protocol (KSP) that allows MACsec 
participants to prove mutual authentication through common possession 
of a master key, agree on SAKs, and ensure that data traffic and keys 
are neither being delayed nor replayed. 
This second revision changes the way that KSP messages are 
themselves protected. It also allows for key selection and distribution by 
an elected group leader—as an alternative to independent key derivation 
by each participant using the public key contributions and the secret 
master key. The key contributions themselves are retained when key 
distribution is used, as they provide a reliable indicator from each 
participant that a fresh key is required, and a reliable indicator to each 
participant that a fresh key has indeed been provided. 
 

1. Introduction 
KSP is designed to meet the need for the 
participants in a IEEE 802.1AE MACsec secure 
connectivity association (CA) to agree data keys 
(SAKs) for symmetric shared key cryptography. 1 
KSP assumes an attacker can copy any frame 
sent by any participant, can selectively prevent 
delivery to some or all participants, can  transmit 
arbitrary frames to arbitrary participants2, and 
can control physical connectivity and power to 
each participant. KSP maintains secure 
connectivity against attacks, using some or all of 
these mechanisms, short of a “wire cutting 
attack” that simply denies service. KSP also 
supports procedures designed to maintain 
security after theft of equipment containing keys. 
KSP’s requirements are driven by MACsec’s 
role in underpinning basic network connectivity 
in enterprise and provider bridged network 
(802.1ad) environments. MACsec secures 
individual LANs, or virtual LANs over a bridged 
network, protecting the infrastructure as well as 
access to that infrastructure3. Connectivity may 
need to be maintained for a number of years, 
with individual participants in the CA being 
powered up or down or being changed during 
that time. Key selection during times of network 
change can depend neither on the presence of a 
previously selected distinguished participant nor 
on connectivity from that or any other participant 
                                                      
1 The initial KSP proposal (4/7/2004) used the MI.MN tuples as 
described in this note to prove liveness and protect against delay 
and replay, but supported central distribution of a time-bounded 
key by an elected (or recognized) participant. Following 
discussion this was changed (10/04) to use a key contribution 
methodology. The development of KSP has benefited from 
discussions with John Viega, David McGrew, and Brian Weis 
though this does not necessarily signify their approval for any 
particular part of the design. All errors and omissions are my own. 
2 The combination of these possibilities covers misordering of 
messages, which can also happen quite unintentionally. 
3 MACsec does not attempt to supplant IPsec by providing end to 
end security. 

to an authentication server. However it is highly 
desirable that authentication and authorization 
be manageable under a AAA framework. Each 
KSP Entity starts its operation with a pre-shared 
master key known as the CAK (connectivity 
association key), whose mutual possession 
authenticates participants in the CA. The CAK 
will often be a PMK distributed by 
802.1X/EAP4,5. 
KSP uses the CAK to agree a sequence of 
SAKs, while ensuring that an SAK with a PN 
(packet number) combination is never repeated, 
either accidentally or as a result of a deliberate 
attack, as it serves as a cryptographic nonce in 
MACsec. KSP manages the use of overlapping 
SAKs to provide continuous connectivity when 
they are being changed. Connectivity is also 
maintained through changes of CAK. 
A CA may change from being logically point-to-
point (with only two participants or members) to 

                                                      
4 Each participant can simultaneously participate in more than one 
instance of KSP, each distinguished by a separate CAK. This is 
important because authentication protocol (EAP in particular) 
does not provide mutual confirmation of the delivery of PMK to the 
mutually authenticated parties, or procedures to support 
symmetrical networking scenarios with delivery of a single PMK, 
or mechanisms robust against timer choices that reliably deliver a 
single PMK in the face of packet loss, delay, and transmission 
retry in the network supporting the EAP exchange. The way to 
check that all parties have a PMK is to attempt to use it, and to 
pick between two PMKs that any participant may find equally 
attractive is to try both and select one that works. 
5 KSP can also be used with a PMK as its CAK for pair-wise 
delivery of a (the same) group CAK to each CA member. This 
aspect of its operation needs to be explained further, but requires 
only minor additions to the key distribution additions introduce in 
this revision. It provides a simple way for a Supplicant to either 
participate in a point-to-point CA or to discover that it is to join a 
group CA, and allows an Authenticator to add a Supplicant to a 
group CA, and to furnish the members of the group CA with fresh 
CAKs. 
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a group CA (three or more members) without 
disrupting connectivity (for at least some CA 
members). Group CAs support multicast 
transmission under a single key to all group 
members. KSP selects common keys for all the 
group members, to avoid receivers having 
separate key tables for every transmitter. 
KSP uses a single message type. KSPDUs 
(KSP protocol data units) are sent periodically 
by each participant, and as needed subject to 
rate limiting controls. Each KSPDU is sent as an 
Ethernet frame with a well known multicast MAC 
address as its destination address, and supports 
mutual discovery of participants attached to the 
same LAN as well as conveying key information. 
Each KSPDU is integrity protected with the 
secret master key (CAK), so only stations  
possessing that master key can generate new 
KSPDUs and tampering by attackers can be 
detected. Each protocol participant includes a 
Member Identifier (MI) and a Message Number 
(MN), unique for messages transmitted using 
that identifier, in each transmitted KSPDU. 
These MI.MN tuples are used to prove liveness, 
protecting against replay or delay of KSPDUs. 
Using this secure transport, each participant 
transmits a Key Contribution (KC). The KCs of 
all the active (as proved by the transport) 
participants are combined under a pseudo-
random function using the secret CAK to 
generate an SAK. The SAK is identified by a 
Key Identifier (KI) that is simply the exclusive-or 
of all KCs contributing to the SAK. The status of 
each participant relative to each SAK⎯ its ability 
to receive and or transmit using the key, the 
binding of the key to a MACsec association 
number (AN), and the lowest PN within an 
acceptable delay window ⎯ are transmitted with 
reference to the KI. 
This revision of KSP also provides for a single 
participant to select and distribute an SAK to all 
the other participants. At the time of writing it is 
not clear whether this should be a dynamic 
option, i.e. selectable during the course of 
operation of a single instance of KSP, a static 
option i.e. one that requires preconfiguration of 
all the participants, or a protocol design 
decision. Input to KSP development has 
variously suggested that it is essential that each 
participant contribute to the key, and on the 
other hand that it is essential that the key be 
chosen by one participant so that it can be 
distributed by already approved distribution 
methods. For the present it is sufficient to note 
that a number of protocol mechanisms underpin 
both approaches. If the key contribution method 
were to be removed a different KI format might 
be chosen and the KCs (which act as requests 
for a new key) might be shorter, but the KIs and 
KCs or their renamed equivalents are still 
required. 
When an SAK is chosen and distributed by a 
single participant, the Member Identifiers are 
used to choose that participant. A new SAK is 
only advertized by a participant (the CA Leader) 
that believes it possesses the highest priority 

MI6 of all those proven to be live. Just as for the 
key contribution method (see below) 
transmitters only start to use the new key when 
all currently live receivers have installed it. Each 
participant’s Key Contribution serves as a 
prompt to request a new key7. The CA Leader 
distributes a fresh SAK whenever a participant 
joins the CA, leaves the CA, or changes its KC. 
The KI of the distributed key is part of the 
KSPDU TLV  that delivers the wrapped up key. 
 

2. KSP Overview 
This section provides an overview of: 
• the secure transport, including 

• addressing and protocol identification 
• integrity protection of KSPDUs 
• proof of master key possession and 

timeliness 
• message ordering 

• use of the secure transport, including  
• key (SAK) agreement and calculation 
• SAK installation, use, and replacement  
• data delay protection 

Figure 1 summarizes the format and use of each 
of the fields of a KSPDU8. Figure 2 is an object 
diagram of a KSP Entity, i.e. that part of a 
protocol participant that actually implements 
KSP.  
NOTE—Figure 1 does not currently show the 
key distribution TLV, which is an optional 
elements preceding the null terminator and ICV. 
This TLV comprises a key identifier and the 
SAK, with the latter protected by the AES Key 
Wrap. 
 
One of the things that the object diagram is good 
at depicting is the scope and containment of the 
identifiers and other parameters used by KSP. 
Whenever an identifier is described as ‘const’ 
within its immediately containing object, it can 
only be changed by destruction of that object 
and all the others that it contains followed by 
creation of a new object. Following sections 
detail the use, creation, destruction, and scope 
of each of the protocol parameters and objects. 
Figure 10 is a state machine, drawn using the 
conventions commonly used by 802.19, that 
describes the life cycle of an SAK from the point 
of view of an individual KSP participant. Figure 8 
is the state machine that generates fresh SAKs. 
The object diagram of Figure 2 is realized by 

                                                      
6 Numerically the highest, with the MIs being interpreted as 
numbers in network byte order. 
7 An alternative, which may be preferable if there is no key 
contribution  
8 Since the last published KSP revision the integrity protection of 
KSPDUs has been changed, and the IV field previously included 
in the PDU has been removed. 
9 Derived from those used by 802.3. 
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C++ code and an accompanying English 
language specification that realize the state 
machines and other processing requirements of 
the protocol. Taken together these comprise the 
definitive specification of KSP. 
 
2.1. Terminology 
Active ⎯ used to describe a Peer that has 
proved current possession of the CAK to the 
Actor . A synonym for Live. 
Actor ⎯ the KSP participant being discussed or 
undertaking the action described. 
CA  ⎯ secure Connectivity Association, a 
MACSec term meaning the subset of stations 
attached to a LAN that are mutually 
authenticated and authorized, and use MACsec 
to exchange data to the exclusion of 
unauthorized stations. Also used to describe the 
symmetric and transitive connectivity provided 
between the stations. 
CAK ⎯ a master key, distributed to the potential 
members of the CA prior to the operation of KSP 
by 802.1X/EAP  or other means, possession of 
the serves to mutually authenticate the CA 
members. Different instances of KSP, with 
different CAKs, can be simultaneously active. 
CKI ⎯ an identifier for the CAK used to protect 
a particular KSPDU. 
DA ⎯ destination MAC address. 
EUI ⎯ an Extended Unique Identifier, a value 
derived from an OUI (Organizationally Unique 
Identifier) allocated by the IEEE Registration 
Authority. Historically an OUI was a MAC 
Address block and an EUI-48 was a 48-bit MAC 
Address.  
ICV ⎯ Integrity Check Value. 
initialize, initialized  ⎯ returning the KSP entity 
to its initial or power on state. In this state the 
entity only knows the CAK, CKI, the SCI and any 
MAC Addresses to be used. 
KC ⎯ Key Contribution. A random nonce (128 
bits) independently chosen by each KSP 
participants as input to the pseudo-random 
function of the CAK used to calculate each SAK. 
Also used to drive the distribution of a fresh SAK 
when that is chosen by the CA Leader. 
KI ⎯ Key Identifier. The exclusive-or of the Key 
Contributions of an actor’s Active Peers. 
Leader  ⎯ the active CA member with the 
highest priority . 
Live  ⎯ a synonym for Active. 
LKI — Latest (or proposed) Key Identifier. 
LLPN — The LPN for the key corresponding to 
the LKI. 
LPN — Lowest acceptable Packet Number, a 
field in a KSPDU for each of the possible keys 
that reflects the lowest PN used in a MACsec 
data frame protected by he key and transmitted 
using the actor’s SC. 

MAC ⎯ Media Access Control. An  abbreviation 
used throughout the LAN industry and in most 
IEEE 802 standards. The term Integrity Check 
Value (ICV) is used in MACsec for an unrelated 
security concept that others associate with the 
acronym MAC. 
Member Identifier (MI) ⎯ a nonce10 chosen by 
the actor to identify itself in subsequent protocol 
exchanges. 
message ⎯ synonymous with KSPDU. 
Message Number (MN) ⎯ a number starting at 
1 and incrementing to 232 – 1 that serves to 
uniquely identify and order each KSPDU within 
the context of a Member Identifier. An MI.MN 
tuple is a nonce for the KSPDU. 
OKI — Old Key Identifier. 
OLPN — The LPN for the key corresponding to 
the OKI. 
Peer(s) ⎯ (an)other KSP participant(s) attached 
to the same LAN as the actor. 
PN — Packet Number. In each MACsec frame 
the PN is a nonce, i.e. is only used once for the 
SAK. 
SA ⎯ Secure Association, a term in general use 
for the shared information that enables secure 
communication between entities, but used in this 
note in the particular sense that MACsec uses it, 
i.e. the information and relationship between 
entities that supports MACsec data transfer with 
a single key. Also the acronym for a source 
MAC address. 
SAK ⎯ Secure Association Key, a MACsec 
term for the key used by one of the SAs that 
compose an SC. 
SC  ⎯ Secure Channel, a MACSec term 
meaning the sequence of secure data frames 
transmitted by a MACsec participant to the other 
members of the CA. 
SCI  ⎯ Secure Channel Identifier, a MACsec 
term meaning an EUI-48+16 or EUI-64 identifier 
for an SC that can form part of the MACsec data 
frame. 

2.2. Addressing 
Each KSPDU is transmitted using the MAC 
Internal Sublayer Service (ISS)11. The 
destination MAC address (DA) is a multicast 
address from the set of reserved addresses that 
are filtered by standard bridges. Not only does 
this correctly bound the discovery of other 
potential KSP participants to those attached to 
the same LAN or virtual LAN, but also means 
                                                      
10 Frankly I get confused by the latitude allowed to the term nonce 
in security documentation. The Member Identifier is clearly used 
for a period of time. The only sense in which it is ‘used once’ is 
that when it is chosen again any previously used value is 
vanishingly unlikely to be reselected. 
11 The ISS (Internal Sublayer Service) specified in IEE Std 802.1D 
Clause 6 is supported by all 802 LAN types. For those not 
interested in the level of detail and flexibility the ISS provides each 
KSPDU can be simply regarded as an Ethernet frame. 
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that an attacker cannot launch an attach from 
anywhere in a bridged network but has to attach 
directly to the LAN to be attacked, or at least 
subvert a station attached to that LAN. 
On physical, as opposed to virtual, LAN media 
the destination MAC Address used with each 
KSPDU is the Bridge Group Address specified 
in IEEE Std 802.1D. 
The source address (SA) is that of the 
transmitting station. 
The Ethertype is allocated to identify KSP. 
Each frame’s DA and SA are included in the 
KSPDU integrity check (see below). 

2.3. KSPDU integrity protection 
Integrity protection of each KSPDU is 
accomplished as follows. The octets of the 
destination and source MAC addresses, in 
canonical format order, are concatenated with 
the KSPDU proper, beginning with the Ethertype 
allocated to identify the protocol, and the 
resulting octet sequence (M) is protected with 
CMAC using AES-128 and a subkey derived 
from the CAK12. Specifically a 128 bit Integrity 
Check Value (ICV) is added to the KSPDU: 
 ICV = AES-CMAC(K,M,128) 
where K is derived from the CAK as follows: 
 K = AES-ECB(CAK,0x1) 
where the CAK is the AES key and the 
encrypted data is a single 128-bit block with the 
value ‘0x1’13. 
The CAK is identified by the CA Key Identifier 
(CKI), a 64-bit value that is either an EUI-48 
(such as a MAC Address) plus a further 16 bits 
allocated by the entity identified by the EUI-48, 
or is an EUI-6414. 
Apart from an SAK that is  separately encrypted 
within the optional key distribution TLV15,none of 
the information in the KSPDU needs to be kept 
confidential. This fact is used to facilitate 
observation and, if necessary, debugging of 
protocol behavior by operational personnel 
without having to provide them with the CAK. 
                                                      
12 A suggested by Brian Weis. See Brian’s LKS specification and 
M. Dworkin, “Recommendation for Block  Cipher Modes of 
Operation: The CMAC Mode for Authentication”, NIST Special 
Publication 800-38B, May 2005 
13 An explanation of why it is necessary to ECB the CAK before 
using it in CMAC would be useful. I think it is because the CAK 
has also been used in the AES Key Wrap, and the ECB is being 
used to derived subkeys from the CAK rather than relyiing on any 
proof that two different direct uses of the CAK can never cause an 
exposure. 
14 There are alternatives, as the CKI only needs to have a very 
good chance of uniqueness. Collisions cause failures to 
communicate, not breaches of security. A hash of a key name 
could be used. 64 bits was chosen previously to align the initial 
PDU format with that for MACsec when GMAC protection of 
KSPDUs was advocated. This is no longer a consideration. 
15 Used when SAKs are chosen and distributed by a CA Leader, 
rather than being computed from the KCs by each participant. 

Most importantly this means that a potentially 
vulnerable interface or set of procedures do not 
have to be provided to selectively disclose the 
CAK for first level network maintenance. 
Additionally the Key Identifier (KI, see below) 
conveyed in KSPDUs serves to uniquely 
identify, to a high probability, the key actually 
agreed by KSP participants without giving the 
attacker any information about that key. The KI 
together with other information in KSPDUs can 
be communicated insecurely to someone who 
has knowledge of the CAK if it  proves really 
necessary to determine the actual agreed value 
of the SAK. 

2.4. Proving liveness 
Each KSP participant identifies itself within the 
protocol by a random16 number, its Member 
Identifier (MI). Each transmitted KSPDU 
includes the actor’s Member Identifier and a 
Message Number (MN). MN is initialized to 1 
and is incremented in each KSPDU sent. The 
actor records the last MN used at regular 
intervals so that it knows the range of MNs it has 
used within the last one or two seconds. 
The Member Identifier is randomly chosen from 
a sufficiently large number space17 that it is 
vanishingly unlikely to have been previously 
used in combination with the same CAK. Each 
KSPDU not only contains the actor’s MI and the 
highest value of MN ever used (up to the time of 
transmission) with that MI, but also lists of 
MI.MN tuples for each of the other participants. 
These provide proof of current possession of the 
CAK to the actor’s peers as follows. If a peer P 
(say) has transmitted MIP.MNP within the last 
second and subsequently receives that tuple in 
a message from the participant A identified by 
MIA with message number MNA, and integrity 
protected by the CAK, then P knows that A18 
possesses the CAK and has transmitted that 
message (and any others received with MIA and 
MN > MNA) within the last second. 
A peer that has proved current possession of 
the CAK to the actor is referred to as “live” or 
“active”, and the proof itself as “proof of 
liveness”. A peer that has not proved current 
possession of the CAK is referred to as a 
“potential” peer. The MI.MN tuples for an actor’s 
peers is correspondingly organized into two lists 
in transmitted KSPDUs : a “Live List” and a 
“Potential List”.  This allows a participant that 
has just been attached to a LAN or re-initialized 
to acquire all the data it needs to prove liveness 
from by receiving a single KSPDU and including 

                                                      
16 A number chosen so that its distribution across all KSP 
participants is indistinguishable from random. 
17 96 bits in the current specification, though this could be easily 
increased if that is thought too small. 
18 Strictly speaking P knows that some station in possession of 
the CAK has sent the message with MIA.MNA. Like all protocols 
this cannot work if authorized participants don’t follow the protocol 
but send bogus information. The essential point is that an attacker 
can’t use old replayed messages to inject out of date information. 
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all the tuples in the “Live List” in its own 
“Potential List”. Separation of the two lists avoids 
the members of the CA keeping alive the 
memory of a long departed participant. 
The Member Identifier for a participant is chosen 
afresh whenever the Message Number space is 
exhausted, or when a “collision” is detected, i.e. 
a participant receives a PDU that is did not 
transmit with its own MI as the transmitter’s MI. 
Both of these are unlikely events, as the MN 
space should last for over 10 years even at the 
transmission limiting rate of 10 KSPDUs per 
second ⎯ far in excess of any reasonable policy 
for changing the CAK, which creates a new KSP 
instance with a fresh MI ⎯ while the change of 
an MI collision even in a very large CA of a 100 
members is less than 1 in 290. However the 
mechanisms for change are included to avoid 
the proof of protocol correctness depending on 
can’t happen events  ⎯ it is an axiom of sound 
protocol design that convergence to a known 
good state from any state should happen within 
known bounded time given correct protocol 
execution during that time without regard to prior 
history and arguments that such and such a bad 
state is unreachable (“can’t happen”). 

2.5. Message ordering 
Since the Message Number (MN) increments 
with each transmission for a participant 
identified by a given Member Identifier, KSP 
allows each authorized participant to convey an 
ordered sequence of messages to other 
participants attached to the same LAN and 
possessing the same CAK, while allowing 
delayed or replayed messages to be discarded. 
This allows recipients to readily determine when 
information conveyed by the protocol should and 
should not replace information already received, 
and largely avoids the need to wait for timeouts 
to age out old information. 

2.6. KSP Transmission 
KSP transmissions are rate limited and, if a 
station has received proof of liveness from more 
than one other station, subject to a small 
random jitter. Normally transmissions occur at 
roughly ½ second intervals, but the rate limiter 
allows a short burst, sufficient for connectivity to 
be established without any timer delay for a 
point-to-point CA. 
If delay bound support is not required the 
periodic transmission rate can be reduced to 
one every 5 seconds. 

2.7. SAK agreement  
This revision of this specification supports two 
different methods of choosing SAKs. In the first, 
“SAK calculation”(2.8), all the participants 
independently  apply a pseudo-random function 
that uses the secret CAK to the key 
contributions publicly distributed by all live 
participants. In the second, “SAK distribution”, 

the CA Leader—chosen by its SCI and MI—
distributes the SAK to the other participants. 
In both methods the key contribution KC is 
changed by a participant whenever it wants to 
prompt for the distribution of a new key, 
although a CA Leader will attempt to anticipate 
the need for new keys arising from simple 
exhaustion of MACsec PN space by any 
participant. In both cases each participant 
maintains a record of all the SAKs calculated 
while it is using a given KC19 value, together with 
the highest Packet Number (PN) used as part of 
the MACsec IV when that SAK is protecting a 
MACsec frame. A new KC is randomly chosen 
when the participant is reinitialized and  when 
the PN space for any of the derived SAKs is 
close to exhaustion. A new KC is also chosen 
whenever the CAK or Member Identifier is 
changed. 

2.8. SAK calculation 
When the SAK calculation method is used, each 
KSP participant independently calculates SAKs 
as a pseudo-random function of the CAK and 
the 128-bit KCs from all active peers. 
The proposed prf is a hash that uses the CAK 
and the sequence of octets obtained by 
concatenating all the KCs together in the 
numeric order of the Member Identifiers of the 
contributing participants, with the greatest first. 
This revision suggests that the prf be the 
essntially the same as that used to generate the 
ICV for integrity protecting KSPUs. Suggestions 
for a better prf are most welcome. 
Specifically: 
 SAK = AES-CMAC(K,M,128) 
Where M comprises the concatenated KCs, and 
K is derived from the CAK as follows: 
 K = AES-ECB(CAK,0x2) 
where the CAK is the AES key and the 
encrypted data is a single 128-bit block with the 
value ‘0x2’20. 

                                                      
19 It is an illusion that use of central distribution removes this 
requirement. If a participant simply forgot prior keys when a 
Leader issued a new key it would be easy to mount an attack in 
which the participant was first allowed to see frames from one 
Leader, then only from another, and then from the first again. In 
the absence of memory of prior keys and of a protected 
acknowledged method for ensuring that a new key has been 
distributed, such a participant could be induced to repeat the use 
of an SAK, PN tuple. Even if the distributed SAK is not a function 
of the KCs, requiring that a Leader change the SAK when a new 
KC is seen and reflecting that KC back to the participant in the 
KSPDU with the distributed SAK ensures that the participant 
knows what history has to be retained, and gets a chance to 
purge that history. 
20 An explanation of why it is necessary to ECB the CAK before 
using it in CMAC would be useful. I think it is because the CAK 
has also been used in the AES Key Wrap, and the ECB is being 
used to derived subkeys from the CAK rather than relyiing on any 
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A separate Key Identifier (KI) for the key is 
calculated as the simple exclusive-or of the KCs 
from active peers. Two KSP participants know, 
to within a very high probability, that they have 
agreed on the SAK if they are both advertising 
the same Key Identifier, but the KI provides no 
information to an attacker that could not be 
otherwise learnt from observing KSPDUs. In the 
absence of knowledge of the CAK, an attacker 
has no way to calculate the SAK using the KCs 
or KI. Moreover the attacker does not know the 
relationship between the SAKs produced by 
selectively removing KCs from the calculation by 
blocking some of the KSP communication. 

2.9. SAK distribution 
When the SAK distribution method is used, any 
participant that has one or more live peers and 
considers itself to be the CA Leader, or has no 
live peers but has potential peers and considers 
itself to be the CA Leader even if those potential 
peers were live, will distribute a randomly 
chosen SAK21. 
The SAK and an accompanying Key Identifier KI 
are distributed in the optional key distribution 
TLV in KSPDUs. These have a type code 0x01 
(in 2 octets), followed by a length of 0x04 (in two 
octets), followed by the KI (in 8 octets), followed 
by the AES Key Wrap protected SAK in 24 
octets. The only wrapped data is the SAK itself. 
The key wrap Key Encrypting Key (KEK) is a 
sub-key derived from the CAK as follows: 
 KEK = AES-ECB(CAK, 0x0) 
where CAK is an AES key, and the encrypted 
data is a single 128-bit block with the value 
‘0x0’. The AES Key Wrap default IV defined in 
[10] MUST be used22. 
If the CA Leader itself decides to distribute a 
new key it should change its own KC, and just 
as for the SAK calculation method, the KI 
distributed should be the exclusive-or of all the 
KCs. There is no dependency on this choice of 
KI, and it could be randomly chosen, but using 
the suggested value makes it easier to debug 
protocol operation and has no security 
downside.23 

                                                                                
proof that two different direct uses of the CAK can never cause an 
exposure. 
21 Better words than “randomly chosen” are required here. The 
usual stuff. Unguessable, even with the knowledge of all past 
history. 
22 This part of the specification borrowed from Brian Weis’ LKS 
specification. 
23 The SAK  distribution method does not provide as tight a 
guarantee that a fresh key has indeed been delivered as does the 
SAK calculation method. Each participant needs to check that the 
Leader considers itself to be live, and needs to retain the 
knowledge of a past key for at least the maximum period for which 
it considers the Leader to be live after the participant has changed 
the KC it was currently using when that key was distributed. With 
the SAK calculation method keys based on old KCs could be 
discarded as soon as that KC was discarded. 

2.10. SAK installation and use 
When using KSP each MACsec participant 
transmits and receives using at most two SAKs 
at a time, no matter how many members a CA 
has. Two SAKs are required to ensure 
continuous connectivity when one changes. 
Different participants may change to a new key 
for transmission at different times and can have 
already protected frames buffered locally or 
within the bridges that support a virtual LAN. 
When the participants in the CA and their KCs 
have not changed for a while, they will all be 
transmitting and receiving using the same SAK 
and will have the spare resource to devote to a 
new SAK should one be required, as will a 
participant that has just be initialized or attached 
to the LAN. 
Given the available resources, any in use SAK is 
advertised in the actor’s KSPDU as the Old Key 
Identifier (OKI) together with the MACsec 
Association Number (AN) used together with the 
MACsec SCI to identify the SA used to transmit 
data frames protected with the SAK, and the 
Latest Key Identifier (LKI) is used to advertise 
the KI calculated using the current KCs from the 
actor and all active peers (or the KI distributed 
by the CA Leader if key distribution is being 
used). 
A new SAK corresponding to the current LKI 
value will be calculated and installed, i.e. 
submitted to the MACsec entity for any 
precalculation of tables and configuration of 
hardware that may be required, when the SAK 
calculated from the KCs of all active peers 
differs from that currently in use, and either: 
a) there is at least one active peer, no potential 

peers, and there is no previous key being 
used for receive or transmit; or 

b) all active peers are advertising the same LKI 
as calculated by the actor. 

At this point the actor assigns the next available 
AN to the new SAK. Once the key has been 
installed, the potential MACsec SAs are installed  
⎯ specifying the receive SCI, AN, and 
acceptable Packet Numbers (PNs) for each of 
the active peers ⎯ and a KSPDU is sent 
indicating that the actor is prepared to receive 
using the key corresponding to the LKI. 
When all active peers have indicated their ability 
to receive using the new SAK it can be used for 
transmission. Once a new key is used to 
transmit, KSPDUs are used to indicate that 
reception is disabled for the prior key (if any) 
and the key is uninstalled after a short delay 
sufficient for reception of any frames already 
transmitted, and for the other members of the 
CA to start using the new key. The station 
machine of Figure 4 specifies the life cycle of 
each SAK. 

2.11. Data delay protection 
Along with each of its key identifiers, the LKI and 
OKI, each participant advertises  lowest 
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acceptable packet numbers (LLPN, OLPN) for 
each of the keys. Each of these reflects the 
lowest PN used within a one second window. 
Each of the participant’s peers uses the time 
bounds provided by its proof of liveness, through 
reflection of their MI.MN tuples, together with the 
LPN values to discard delayed traffic. 
Enforcement of delay bounds necessitates 
transmission of KSPDUs at frequent (½ second) 
intervals, to meet a maximum data delay of two 
seconds while minimizing the chance of 
connectivity interruption due to the possibility of 
lost or excessively delayed KSPDUs. KSP can 
operate without data delay protection, lessening 
the receive processing requirements in large 
CAs. However one of the ways to disrupt overall 
network stability is to attack the configuration 
protocols that MACsec is designed to protect by 
alternately delaying and delivering their PDUs, 
typically with cycle times in the range 4-30 
seconds. Such attacks can cause effects that go 
beyond the immediate LAN. If data delay 
protection is not used, other procedures should 
be used to minimize the opportunity for such an 
attack. 
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Member Identifier (MI)

Field
Size
(bits)

48Destination Address

Source Address 48

KSP EtherType
16

16

Octet
posn.

0

Message Number (MN)

64

CKI 64

32

128Key Contribution (KC)

Live Peer List/List Length

SCI

Member Identifier

Message Number

Member Identifier

Message Number
Potential Peer List/List Length

Live List Length (octets)

96

Member Identifier

Message Number

Member Identifier

Message Number

0000 0000 0000 0000

16

16

Potential List Length (octets)

32

96

96

32

128

32

2

90 +
 16*Live  Peers

88

36

32

20

12

4

110 +
 16*Live  Peers +

 16*Potential Peers

ICV

G
M

AC
 Integrity Protection

Latest Key Identifier (LKI)

Old Key Identifier (OKI) 128

128 52

68

LAN tx dpis OAN rxtxisVersion

Latest Key - Lowest Acceptable PN (LLPN)

Old Key - Lowest Acceptable PN (OLPN)

16

16

70

86

90

96 104 +

92 +
 16*Live  Peers +

 16*Potential Peers

106 +

Multicast address, confined by bridges to a single LAN.

Use (or not) of Latest and Old Key fields below, if used the
MACSec association number (AN)  bound by the actor to each
key, and whether receiving/transmitting using the key.
Identifies the CAK (secure Connectivity Association Key), i.e. the
master key used to GMAC protect this KSPDU. MAC address
based (EUI-48) so can be allocated by system managing master
keys. Persists across power cycles/reboots/system resets, while all
other recorded info apart from MAC Address/ SCI assumed lost.

Destination address integrity protected. Makes it hard to
launch an attack from a distance as address will not pass
through bridges, but cannot be changed on captured frames.

MAC address (EUI-48) based Secure Channel Identifier used
when transmitting MACsec data frames. Receivers bind SCI,AN
to selected SAKs (Secure Association Keys) for MACsec.

Integrity protected frame in clear allows debug/
attack investigation by field operations personnel
without need to disclose/ provide disclosure of CAK
(integrity protecting master key).

Random nonce, generated at reboot/system initialization. Also
reselected if collision detected (station with other SCI using
same nonce), or Message Number space exhausted.

Nonce, incrementing from 1 when new MI generated. Actor
records values at intervals to support timeliness verification
(see below). Good for 13+ years before new MI reqd.

Random nonce, generated at reboot. Reselected whenever
MACsec data PN (packet number/nonce) for selected data key
(SAK) near exhaustion. Input to pseudo-random function using
CAK to generate SAK or prompt to Leader to distribute.
XOR of all KCs currently input to SA. Probably uniquely identifies
selected SAK but provides no info to attacker .Protocol converges
even if collisions, may be data packet loss. SAK selected and
receiving initiated when at least one LIve Peer, and no Potential
Peers , or all Live Peers agree LKI. Transmit initiated when all
Live Peers report receiving.
Old SAK used to transmit while latest being selected, retained
after transmitting on new SAK to collect frames of differing
priority and allow others to move to new SAK. Explicitly
identified  to ensure no problems if participant loses messages
when LKI becomes OKI, and new LKI calculated soon after,
and to clarify result of group merge while two LKIs in selection.

Reflecting received identifiers proves liveness to others.
Reflecting last received message number proves timeliness to
others, defeats ‘delay frames’ attack. If no timely messages
(max delay 2 - 10 secs) from participant, will be removed from
Live Peer List and SAK calculation and reception stopped.

Separately identifying “Live Peers’ i.e. participants that have
proved liveness and timeliness to actor, from “Potential Peers”
to which actor will respond to prove own liveness, allows
participants quicker retransmit when apparent lost messages
have defeated their proving liveness. Also allows Potential
Peer List to be seeded from others Live Peer List (speeds
convergence) without keeping old participants/Member
Identifiers  in circulation for ever.

Terminates PDU while allowing TLV extension for future revision.

CMAC ntegrity Check Value calculated using CAK (master key)
allows each participant to prove possession of the master key,
and prevents message modification by attackers.

Bounds data transit delay, particularly where priorities/drop
precedence mean no PN based data replay protection.

rxic

 
 

Figure 1 — KSPDU Format and Fields
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3. Model of operation 
Figure 2 is an object model of part of a KSP 
participant, including the KSP Entity itself and its 
relationship to the MACsec Entity (SecY). Figure 
3 (tbs) summarizes the notation used, which 
follows UML 2.0 conventions. 
The KSP Entity forms part of the Key Agreement 
Entity, which in turn attaches to the Uncontrolled 
Port provided by the SecY. Each KSP Entity can 
support a number of KSP instances, each with a 
fixed CAK and corresponding CKI. Each KSP 
instance maintains its own actor and list of 
peers. 

Throughout the diagram objects with ‘const’ 
attributes retain those attributes throughout their 
life. Changing those attributes requires 
destruction and recreation of those objects. 
Thus changing the actor’s key contribution (kc) 
discards the records of keys to which the kc has 
contributed. Similarly changing the actor’s 
member identifier results in resetting the 
message number and  choosing a new key 
contribution. The records of keys generated with 
the key contribution are not required unless 
further keys are to be generated with the past 
contribution, so either of the keys in use can 
continue to be used until a fresh key with the 
new key can be brought into service. 

 

Ksp_frame : public Pdu

Kspdu : public Pdu

latest_key

old_key

latest_key

old_key

delay_bounds

life_bounds

KSP Objects <<KSPO 0.3>>

ki()
key()
all_active_agreed(pkn)
all_active_receiving(pkn)
rxpdu(Pdu *pdu)

Ksp // KSP instance
const cak
const cki

Peer
live_peer_while
potential_peer_while
include_kc
kc
sci

Participant
const mi
mn

*

Actor_key

*

SecY

Port : public Service

uncontrolled_port

Port : public Service
1

*

const kc
installed
next_PN
finish

Participant_key
const ki
an
receiving
transmitiing

4

old_next_PN

Peer_key
lowest_acceptable_PN

Actor_contribution
const kc

Contributed_key
ki
next_PN
in_use

mn

Actor
life(mn)

4
*

lsaps

Kspy // KSP entity

Gcm

Kay : public Service_user
sci
next_an

1

actor

{ordered} peers

kay

akc

keys
ksps

 
Figure 2 — KSP Object Model 



 
 

Rev.0.5 5/29/06 5:38 PM  10 

 
Figure 3 — object diagram notation 
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This section specifies the operation of the KSP 
Entity with reference to the object model of 
Figure 2. The principal functional aspects of 
operation are first described in relation to state 
machines implemented by the objects, this 
description is then followed by a detailed 
specification of the variables and procedures 
used by each object. Conformance to the 
specification requires implementation of 
externally observable behavior that corresponds 
to the behavior of the specified objects and their 
variables and procedures, including procedures 
whose behavior is specified as corresponding to 
that of the specified state machines. 

3.1. State machines 
The following objects implement the following 
state machines, in addition to procedures that 
perform simple processing or supply information 
to other objects: 
• Ksp — Ksp instance 

• Receive Machine 
• Transmit Machine 
• Actor Creation Machine — instantiates 

and refreshes actor (Actor object) 
instances 

• Actor 
• Key Generation Machine — instantiates 

new keys (Actor_key object) and 
instantiates and refreshes the actor’s 
key contribution (Actor_contribution 
object) 

• Actor_key 
• Actor Key Machine 

3.2. Receive KSPDU processing 
The MAC Security Entity (SecY) notionally 
provides all received frames to the users of its 
Controlled Port. The Key Agreement Entity 
(KaY) uses the services of an LLC Entity24, 
selecting only those it is interested in as 
identified by their Ethertypes, including KSP25 
frames. These are submitted to the KSP Entity 
(Kspy). 
The KSP Entity first checks that the destination 
MAC address is the assigned multicast address. 
Then it extracts the CKI from the frame to 
identify the KSP instance (Ksp object) that is the 
intended recipient and its CAK. GMAC (GCM 
Integrity Check) is used to validate the frame. If  
successful the received frame is marked as 
valid, the addresses and ICV removed, and it is 
passed to the Ksp’s Receive Machine (Figure 
4). This counts and discard invalid frames, and 
processes the remainder as described below. 

                                                      
24 In keeping with recent 802.1 practice an LLC Entity is 
considered to include Ethertype multiplexing/demultiplexing. 
25 In keeping with standards practice an Ethertype will not be 
assigned until the sponsor ballot stage is reached. 

If the frame’s26 MI and SCI are the same as 
those of the (receiving) actor, then the frame 
has, in all probability, been loop backed to the 
transmitter27 and is counted and discarded. If 
just the MI is the same it seems that the unlikely 
event (1 in 290 odd) of a duplicate MI has 
happened. A count is incremented, the PDU 
discarded, and the actor’s own MI changed by  
deleting and recreating the Actor object and its 
dependents This will disrupt connectivity if the 
KSP instance is controlling the MACsec keys. 
The most likely cause of duplicate MIs is a 
broken pseudo-random number generator, so 
the counted event warrants investigation. 
The actor’s list of peers is searched for a match 
with the frame’s MI. If the peer is found then its 
recorded MN is compared with the frame’s MN, 
and misordered or duplicated frames are 
counted and discarded. The frame’s SCI is 
checked against the recorded SCI recorded. If it 
has changed the peer record is deleted, and 
processing proceeds as if the frame were the 
first received from the peer. A peer not found in 
the list is added to it. Since key contributions 
from live peers on the list are used ordered by 
MI to calculate an SAK it is convenient, though 
not essential, to keep the list ordered.  
The potential life of the peer, i.e. the time the 
peer record will be kept, (potential_peer_while) 
is updated even though the peer has not yet 
been checked for liveness. If frames from a past 
peer are being replayed by an attacker the 
minimum work should be done for each frame, 
and maintaining the peer in the list achieves 
that. 
The peer record is updated with the receive MN, 
so that it can be used to check for misordered or 
duplicate frames with the same MI.  
The frame’s live and potential peer list are then 
scanned for the actor’s own MI. If it is found the 
corresponding MN is compared to the actor’s 
own records (life_bounds) of the time elapsed 
since that MN was transmitted, and the time for 
which the peer record should be considered live 
(live_peer_while) is calculated. 
If the peer is live then its key contribution may 
be newly included or changed, forcing a key 
recalculation. A live peer may not wish to 
contribute to a new key, as indicated by the 
include_kc flag in the KSPDU : it may have been 
sent to play out the delay protection for frames 
currently sent by a participant intent on 
calculating new keys with a different KSP 
instance and a more recent SAK. 
Each participant indicates whether receivers 
should apply delay protection to received data. If 
delay protection is off, the peer is not 
guaranteed to transmit KSPDUs sufficiently 
frequently to allow delay bounds to be imposed. 

                                                      
26 Throughout this description the short hand “the frame’s MI” is 
means “the MI used by the participant transmitting the frame”. 
27 Active loopback is a curse and can easily stop a network 
working. The damage done far exceeds its diagnostic potential. 
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The receive key information for a live peer is 
updated, including the keys used (as indicated 
by the LKI and OKI key identifiers), their 
associated SAs as identified by their association 
numbers (AN), and lowest acceptable packet 
numbers used to enforce delay protection. 
The peers included in the live peer list included 
in a KSPDU sent by a live peer are added to the 
actor’s own list of peers if not already present. 

If the current KI is to be recalculated as a result 
of receiving the KSPDU then the actor’s Actor 
Key Machines for both the latest and old key are 
executed, as is the Key Generation Machine. 
C++ code for receive processing follows (Figure 
5).

 
 

 
 
 
 
 
 
 
 
 

 
Figure 4 — Receive machine 

void Ksp::rxpdu(Pdu *received_pdu) 
{ 
   Kspdu  rcvd(received_pdu); 
 
   if (!rcvd.valid )      { rcv_event(Invalid_pdu)    return; }; 
   if ((rcvd.sci == sci) && (rcvd.mi  == actor.mi)) 
                          { rcv_event(Loopback_pdu)   return; }; 
   if ( rcvd.mi == actor.mi) 
   { 
      this.change_mi();     rcv_event(Duplicate_mi)   return; 
   };                                      // broken psrng? 
 
   Peer *peer = find_peer( rcvd->mi); 
   if (peer != 0) 
   { 
      if (rcvd.mn  <  peer->mn) { rcv_event(Misordered_pdu) return; }; 
      if (rcvd.mn  == peer->mn) { rcv_event(Duplicate_pdu)  return; }; 
 
      if (rcvd.sci != peer->sci){ rcv_event(Peer_sci_changed); 
                                   delete peer; peer = 0;           }; 
   }; 
   if (peer == 0) 
   { 
      peers.push_back(Peer( this, rcvd.mi, rcvd.sci)); 
      peer = &(peers->last()); 
   }; 
 
   peer->potential_peer_while = potential_peer_life; 
   peer->mn  =  rcvd->mn; 
 
   Ticks life = actor->life(rcvd->find_me(actor->mi)); 
   if (life > peer->live_peer_while) peer->live_peer_while = life; 
 
   if (peer->live_peer_while != 0) 
   { 
      if ((peer->include_kc != rcvd->include_kc) || (peer->kc != rcvd->kc)) 
         bool recalculate_key = true; 
 
      peer->include_kc    = rcvd->include_kc; 
      peer->kc            = rcvd->kc; 
 
      peer->delay_protect = rcvd->delay_protect; 
 
      peer->rx_keys(&rcvd); 
 
      add_potential_peers(*(rcvd->peers)); // from live peer's live list 
 
      if (recalculate_key) 
      { 
         if (old_key != 0)    old_key->actor_key_sm(); 
         if (latest_key != 0) latest_key-> actor_key_sm (); 
         key_generation_sm(); 
      }; 
}; }; 

BEGIN

RECEIVE_READY

<<RXM 0.2>>

RECEIVE
rxpdu(received_pdu);

rcvdMsg = false;

rcvdMsg == true

UCT
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Figure 5 — KSPDU receive processing 
 
 

 
 
 
 

 
 
 
 

Figure 6 — Transmit state machine 
 
 
 

 
 
 
 
 
 

 
 
 

Figure 7 — Actor Creation state machine 
 

 

BEGIN

ACTING

NEW_ACTOR

<<ACM 0.1>>

actor = new Actor();
UCT

REFRESH_ACTOR
delete actor;

actor->exhausted() || (change_mi())

Actor::Actor() : mi(prng96()), mn(1)
{ kc = new Actor_kc();
};

helloWhen = HelloTime;

IDLE

newInfo = TRUE;
txCount = 0;

TRANSMIT_INIT

UCT

newInfo = true;

TRANSMIT_PERIODIC
UCT

TRANSMIT_KSP
newInfo = !(transmit_complete = txpdu());

txCount +=1;

BEGIN

UCT

helloWhen == 0

newInfo  && (txCount < TxHoldCount) && (helloWhen !=0)

<<TXM 0.1>>
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3.3. Transmitting KSPDUs 
Each KSP instance transmits KSPDUs 
independently of each of the others, subject to 
its own transmission rate limiter. The transmit 
machine, implemented by the Ksp object, is 
specified in Figure 6. Each of the other 
machines, if it detects a need to transmit new 
information to other KSP participants, sets the 
newInfo flag to prompt a transmission. In 
addition the transmit machine ensures that 
periodic transmissions take place. 
If the number of participants is limited (to 86 or 
less), information for the actor, live peers, and 
potential peers is  included in a single KSPDU. 
Otherwise the actor’s own information is sent in 
every PDU, but the live and potential peer lists 
are filled by proceeding through the Ksp’s list of 
peers, recommencing with the next KSPDU. 

3.4. Choosing and changing MIs 
Each KSP Instance uses a single Member 
Identifier (MI) at a time. However the value may 
need to be changed, first to handle the unlikely 
event of a collision of choices by different 
participants. Secondly the MI has a limited life, 
since the MI.MN tuple must never be repeated28. 
At the envisaged maximum transmission rate of 
10 KSPDUs per second it is conceivable that the 
MI would have to be changed once every ten 
years. The 96 bit MI is chosen at random, i.e. 
such that the distribution of MIs chosen by any 
set of KSP participants using the same 
implementation of MI choice is indistinguishable 
from a random selection. 
The MI29 effectively defines a multipoint 
connection from the actor to each of its peers, 
ordering the KSPDUs transmitted. This allows 
each change of Key Contribution (KC) by the 
actor to be communicated effectively. When the 
MI is changed there will be a short period when 
the actor’s peers will have a record of its 
previous MI and KC, and until this times out a 
new key value will not be agreed. Note that the 
actor’s KC is within the scope of the Actor 
object, which is recreated when the MI changes 
so that the KC will be forced to change at the 
same time. This avoids the possibility of a single 
participant contributing the same KC twice, and 
thus having it cancel out in the KI calculation. 
Figure 7 specifies the actor creation state 
machine implemented by the Ksp object. 

                                                      
28 At least the chance of repeat with the same CAK must be so 
rare that no attacker will ever think of looking for one. 
29 It might be thought that the MAC address based SCI could 
serve as a sufficient unique identifier of a system, in combination 
with the KC itself. However duplication of MAC addresses, both 
accidental and deliberate, is far more common than it should be 
and attempting to guess when this is occurring is much more 
difficult if the protocol lacks the explicit MI. Trying to economize on 
fields in PDUs is a bad choice. KSP spots duplicate SCIs reliably. 
 

3.5.  Key Generation 
The actor object implements the key generation 
machine (Figure 8). A new key (SAK) is 
generated if the actor has active peers, there is 
currently only one key (i.e. no old key), the key 
generation machine has not been told to finish 
(in deference to another KSP instance),the key 
selected is not already in use and its PN space 
is not exhausted. The existing 
Actor_contribution is deleted and recreated if a 
new key is wanted but its PN space is 
exhausted. 
The Key Generation machine does not delete 
the keys it creates. The instance of the actor key 
machine created with each key does this after 
the key is no longer used for transmission or 
reception. 
3.6. Key installation and use 
Each Actor_key is created by the Key 
Generation machine as specified by the C++ 
code in Figure 9, and implements the actor key 
machine of Figure 10 and previously described 
in section 2.8. 
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Figure 8 — Key Generation state machine 
 
 

Actor_key::Actor_key(Ksp *p, KI key_id, KC key_contribution) : Participant(key_id), ksp(p), 
kc(key_contribution),          
 
 receiving = transmitting = finish = false; installed = 0; an = 0; 
   next_PN   = ksp->next_pn_for(key_contribution, key_id); 
    
   for (int i = 0; i < ticks_to_record; i++) delay_bounds.push(next_PN); 
 
   akm = PENDING_AGREEMENT; 
   dbm = DELAY_BOUND; 
}; 

Figure 9 — Actor key creation 
 

BEGIN

WAITING

NEXT_KEY FRESH_KC
old_key = latest_key;

latest_key = new Actor_key(this, ki(), akc);

( active_partners() ) &&
( old_key == 0 ) &&
( !finish ) &&
( !key_in_use(ki()) ) &&
( !akc->ki_exhausted(ki()) )

<<KKM 0.2>>

delete akc;
akc = new Actor_kc;

UCT UCT

( active_partners() ) &&
( old_key == 0 ) &&
( !finish ) &&
( akc->ki_exhausted(ki()))
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Figure 10 — Actor key machine

BEGIN

PENDING_AGREEMENT

ksp->all_active_agreed(ki) &&
secy->macsec_can_install()

NOT_USING_KEY

an = kay->use_next_an();
secy->macsec_install_key(this, ksp->key(), kspy->sci, an, next_PN);

START_RECEIVING
ksp->add_rxsas(installed, ki); receiving = true;

ksp->all_active_agreed_receiving(ki)

secy->macsec_transmit(installed); transmitting = true;

ksp->no_active_transmitting(ki) || finish
STOP_RECEIVING

receiving = false; an = 0;

if (this == ksp->latest_key) latest_key = old_key;
old_key = 0; delete this;

START_TRANSMITTING

INSTALL_KEY

 (installed = macsec_installed_key()) != 0

UCT

secy->macsec_transmit_key() != installed;

transmitting = false;
STOPPED_TRANSMITTING

(agreement _lost(ki))

UNINSTALL_KEY
next_PN = secy->macsec_uninstall_key(installed); installed = 0;
kay->rlse_an(an);

delay_bounds.empty()

KaY * const kay = ksp->kspy->kay;
SecY* const secy = kay->secy;

Actor key state machine <<AKM 0.3>>

(ki != ksp->ki())
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3.7. Kspy 
This subsection, and others like it, will be 
eventually provided to detail the variables and 
procedures supported by each of the objects 
that compose the operational model. 
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4. Examples 
This section provides some examples of KSP 
operation, focusing on the essentials of key 
agreement, installation, and use. Each message 
is shown with its three component parts — actor 
information, live peer list, and potential peer list 
— separated by the | symbol thus: 
Actor | Live list | Potential list 
and each MI + MN tuple as X+1, X+2, etc. 
where X is the MI value. 

4.1. Two participants 
Consider two stations SA, SB each with an 
MI+MN of A+.., B+.., and key contributions of 
KCA, KCB. The KSPDU exchange following 
initialization of the stations proceeds as follows: 
SA→A+1, KCA ||  →SB.. (1) 
SB→B+1, KCB || A+1  →SA.. (2) 
SA can now calculate SAKAB with key identifier 
KIAB, since SB has proved itself live and SA 
knows of no other potential participants. 
Assuming that SA waits to turn its receiver on to 
receive from SB before transmitting again: 
SA→A+2, KCA,, LKIAB.r | B+1 |  →SB.. (3) 
SB can now receive and transmit using the 
agreed key, and transmits: 
SB→B+2, KCB, LKIAB.rt | A+2 |  →SA.. (4) 
so A can start receiving and transmitting. 
Thus in the point-to-point case, in the absence 
of an attack, KSP’s behavior is the same as that 
of the well-known 4-way handshake. 

4.2. Another participant joins 
Continuing with the prior example, a station SC 
is attached to the LAN or powered up. 
Assuming, in order to be explicit about the 
message exchanges, that SC is just in time to 
receive the last message of the previous 
sequence: 
SB→B+2, KCB, LKIAB.rt | A+2 |  →SA, SC.. (4) 
then SC will record both SA and SB as potential 
peers and transmit: 
SC→C+1, KCC || A+2, B+2  →SA, SB.. (5) 
this message will prove SC’s liveness to both SA 
and SB who will independently move SAKAB to 
being their old key, calculate a new key SAKABC 
with KIABC, and transmit: 
SA→A+3,KCA,LKIABC,OKIAB.rt|B+2,C+1| →SB,SC(6) 
SB→B+3,KCB,LKIABC,OKIAB.rt|A+2,C+1| →SA,SC(7) 
Neither of these two messages will cause SA or 
SB to transmit again (until their periodic transmit 
timers elapse of course) as they have no new 
status to report, nor will SC transmit until it has 
received both. Once SC receives the messages 
it will have proof of SA and SB’s liveness and will 
have calculated the same LKI as they have, so it 
will install SAKABC, enable reception, and 
transmit: 

SC→C+2, KCC,LKIABC.r | A+3,B+3 | →SA,SB(8) 
SA and SB will then install the key and enable 
reception, and transmit: 
SA→A+4, KCA,,LKIABC.r, OKIAB.rt | B+3,C+2 |→SB,SC(6) 
SB→B+4, KCB,LKIABC.r, OKIAB.rt | A+4,C+2 |→SA,SC(7) 
whereupon all the participants can transmit. A 
little later their periodic transmissions will show 
that they are receiving and transmitting using 
LKIABC, but these at not required to establish the 
new connectivity. 
In general addition to a group requires each 
participant to send two messages.30 More 
messages can be transmitted if some or all of 
the participants have a significant transmission 
delay after processing. 

4.3. Forcing a key change 
The members of a CA transmit data 
independently at their own rate, so it is not 
known in advance which will come close to 
exhausting the PN space for an SAK first. Any 
KSP participant can force a key change by 
changing its KC. Assuming two participants, that 
having been contributing KCA, KCB for a while, 
the last periodic messages transmitted prior to 
the change will be: 
SA→A+3, KCA, LKIAB.rt | B+5 |  →SB.. (1) 
SB→B+6, KCB, LKIAB.rt | A+3 |  →SA.. (2) 
(where the numbers ‘3’ and ‘6’ and their 
successors are used as short hand for what will 
be much larger numbers — the time between 
forced key changes is at least 5 minutes for 10 
Gb/s Ethernet and likely to be over a month for 
100 Mb/s in typical use). 
Assuming SA needs to change the key first, it 
generates a new key contribution KCA2, 
calculates LKIA2B, and transmits: 
SA→A+4, KCA2, LKIA2B,  OKIAB.rt | B+6 |  →SB.. (3) 
On receipt, SB calculates the same new SAK 
and LKI, installs the new key, enables reception, 
and transmits: 
SB→B+7, KCB, LKIA2B.r,  OKIAB.rt | A+4 |  →SA.. (4) 
On receipt of this message SA enables 
reception, starts transmitting data, and 
transmits: 
SA→A+5, KCA2, LKIA2B.rt,  OKIAB.rt | B+7 |  →SB.. (3) 
so SB can start transmitting data using the new 
key, completing the change. 
In general a key change requires each 
participant to transmit a single message, plus 
one message for the initiator of the change 
                                                      
30 My October presentation described key installation and 
reception enabling criteria that require only a single message from 
each participant. These have a slightly higher chance of flapping 
connectivity for the new participants if many join at the same time 
i.e. within a 100 milliseconds or so. Simulation may show which 
strategy is to choose. In principle participants can make their 
choice independently, as a combination is interoperable, but the 
specification should make the definite choice. 
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4.4. Message crossing 
There is nothing particular about the choice of 
SA and SB in the two participant startup example 
above (4.1), so the message exchange 
described is clearly independent of which station 
transmits first. It is possible that they transmit at 
the same time, or at least before either has 
processed its receive message. It is a good idea 
in KSP, and a number of protocols, to process 
any received messages when scheduled before 
transmitting, but the ‘message crossing’ can still 
occur. KSP will still complete promptly, with the 
worst case of message crossing proceeding as 
follows: 
SA→A+1, KCA ||  →SB.. (1) 
SB→B+1, KCB ||  →SA.. (2) 
SA→A+2, KCA || B+1  →SB.. (3) 
SB→B+2, KCB || A+1  →SA.. (4) 
SA→A+3, KCA,, LKIAB.r | B+2 |  →SB.. (5) 
SB→B+3, KCB, LKIAB.r | A+2 |  →SA.. (6) 
At this point both SA and SB can receive and 
transmit using SAKAB, so instead of the required 
4 messages a total of 6 have been sent. The 
transmit state machine introduces a small 
random (in the weak sense) delay whenever a 
station has more than one active peer. This 
reduces the expected number of messages sent 
for large group CAs. 

4.5. Multiple key changes 
There is a small chance that two participants will 
decide to revise their key contributions at the 
same time, though a change by either would 
result in a new key that would have solved the 
other’s PN space problem. With two participants 
that have just sent the messages: 
SA→A+3, KCA, LKIAB.rt | B+5 |  →SB.. (1) 
SB→B+6, KCB, LKIAB.rt | A+3 |  →SA.. (2) 
and then both decide to change their key 
contributions, the sequence of messages 
proceeds as follows. 
SA→A+4, KCA2, LKIA2B,  OKIAB.rt | B+6 |  →SB.. (3) 
SB→B+7, KCB2, LKIAB2,  OKIAB.rt | A+3 |  →SA.. (4) 
    (3)  →SB....... 
at which point both SA and SB will calculate a 
new key with LKIA2B2 and transmit once more, 
assuming SA happens to transmit first: 
SA→A+5, KCA2, LKIA2B2,  OKIAB.rt | B+7 |  →SB.. (5) 
now, from SB’s perspective, all active 
participants have agreed on the same key so it 
can be installed and reception enabled: 
SB→B+8, KCB2, LKIA2B2.r,  OKIAB.rt | A+5 |  →SA.. (6) 
and on receipt SA can do the same, and switch 
transmission to the new key, transmitting: 
SA→A+6, KCA2, LKIA2B2.rt,  OKIAB.r | B+8 |  →SB.. (7) 
allowing SB to switch transmission to the new 
key. Eventually reception using the old key will 
stop, and it will be uninstalled. 

4.6. Participant leaves 
Say that SA, SB, and SC have agreed SAKABC 
based on their key contributions KCA, KCB, KCC, 
and have just transmitted messages: 
SA→A+3, KCA,LKIABC.rt|B+3,C+3|  →SB, SC(1) 
SB→B+3, KCB,LKIABC.rt|A+3,C+3|  →SB, SC(2) 
SC→C+3, KCC,LKIABC.rt|A+3,B+3|  →SB, SC(3) 
(where ‘3’ stands for whatever MN SA, SB, SC, 
have individually reached thus far for their MIs) 
when SC is removed from the LAN. SA and SB 
will carry on with the same key for a brief while, 
until one or the other of them times out SC. 
Assuming SA does so first, after two further 
periodic transmissions. It will transmit: 
SA→A+6, KCA, LKIAB,OKIABC.rt|B+5|  →SB.. (4) 
Though SB might send  
SB→B+6, KCB, LKIABC.rt|A+6,C+3|  →SA.. (5) 
at its next transmission, but it will also eventually 
time out SC, and will then send: 
SB→B+7, KCB, LKIAB.r,OKIABC.rt|B+5|  →SA.. (6) 
since SA has already agreed LKIAB. On receipt 
SA can install SAKAB, enable reception, start 
transmitting data using the key, and transmit: 
SA→A+7, KCA, LKIAB.rt,OKIABC.r|B+7|  →SB.. (7) 
which allows SB to start transmitting using the 
new key. 
The worst case of a new participant attempting 
to join a CA is when a previous participant has 
just left, since the existing participants will 
attempt to include the departed station for a 
while, but the newcomer cannot. 

4.7. Agreement under replay attack 
Consider the two participant startup example 
above (4.1). Assume that an attacker has 
eavesdropped on an earlier use of the LAN 
between SA and SB, and acquired one or 
messages from SA when it was using the 
Member Identifier R with the present CAK — so 
the message will pass the GMAC integrity 
check. In some scenarios it may be very easy 
for the attacker to insert his equipment in the link 
between the two stations, fiber connections 
through a common patch panel in a collocation 
facility being one possible example. The 
attacker might wait until SA transmits its first 
message: 
SA→A+1, KCA ||  →SB.. (1) 
and then inject the replayed message, delivering 
it just to SB. 
 →R+3, KCR, LKIQR.rt|Q+7|  →SB.. (1a) 
Now SB receives and processes both messages, 
recording both A and R (but not Q) as potential 
peers and transmits: 
SB→B+1, KCB || A+1, R+3  →SA.. (2) 
this proves to SA that SB is live, or to be more 
exact it proves to the participant identified by A 
that a participant identified by B is live. SA does 
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not record R as a potential peer, since it is not in 
SB’s live list and transmits: 
SA→A+2, KCA, LKIAB.r | B+1 |  →SB.. (3) 
having calculated SAKAB using the key 
contributions of all active peers (i.e. itself and 
SB). On receipt SB finds that its calculation of the 
LKI agrees with that of all active peers, and 
therefore installs the key, enabling both 
reception and transmission, and transmits: 
SB→B+2, KCB, LKIAB.rt | A+2 | R+3  →SA.. (4) 
enabling SA to start transmission. 
This particular replay attack failed to increase 
the number of messages or time required for the 
true participants to start communicating. 

4.8. Another replay attack 
The attacker of the previous example tries 
again, this time sending the replayed message 
(1a) to both SA and SB. 
 →R+3, KCR, LKIQR.rt|Q+7|  →SB.. (1a) 
Assuming that SA processes this message 
before SB sends, the message sequence 
proceeds as follows. 
SA→A+2, KCA || R+3  →SB.. (2) 
SB→B+1, KCB || A+1, R+3  →SA.. (3) 
SA→A+3, KCA, LKIAB | B+1 | R+3  →SB.. (4) 
SB→B+2, KCB, LKIAB.r | A+3 | R+3  →SA.. (5) 
SA→A+4, KCA, LKIAB.rt | B+1 | R+3  →SB.. (6) 
After receipt of this last KSPDU SB can start 
transmitting. The sequence of messages has 
been extended by one because of the attack. 
additional replayed messages do not slow 
convergence on the key any more. 
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5. Goals and requirements31 
KSP and the assumptions made about its 
placement within the overall key hierarchy for a 
network, attempt the following32: 
1. Maximize the chance that the required full, 

i.e. symmetric and transitive, connectivity is 
provided between stations on the LAN. 

2. Provide secure connectivity within a few 
seconds of the underlying LAN service 
becoming available. 

3. Function correctly in an environment where 
stations are powered on and off at any time, 
and where an attacker may control power. 

4. Allow any subset of stations to be powered 
off and on again without disrupting the 
connectivity33 between the remainder of the 
stations. 

5. Support both point-to-point and multipoint 
connectivity without preselection of one or 
the other. 

6. Ensure delay bounds for MACsec data 
traffic. 

7. Operate without requiring pairwise 
communication between all stations. 

8. Allow connectivity to be re-established after 
power-up without requiring network 
connectivity to an authentication server. 

9. Protects against attacks that attempt to 
exhaust resources by requiring difficult 
cryptographic calculations. 

10. Minimize the number of SAKs that each 
station needs to support at any one time, in 
practice limiting these to two. 

11. Operate without the use of computationally 
expensive public key cryptography 
techniques. 

12. Not disclose the data keys (SAKs)  

5.1. Non-goals 
1. Guard against or compensate for the use of 

weak keys34. 

                                                      
31 Goals are those things that one would like to do and can do, the 
other things are non-goals. Requirements (in standards 
development) are things the other guy can’t do. 
32 Amongst numerous other goals. 
33 It is not even necessary to change SAKs if each station has a 
real time clock of even modest accuracy. 
34 Possession of even a single KSP message allows an attacker 
to attempt an offline  brute force attack. The KSP message is 
integrity protected so the attacker knows with reasonable certainty 
when the key has been guessed. Possession of a second KSP 
message confirms the key to a high probability. For this reason 
KSP is not used with easily guessable password based CAKs. 

6. Target environment 
KSP is designed to support fixed infrastructure 
connectivity requirements for enterprises and 
users of the P802.1ad Provider Bridge draft 
standard. In particular both the MEF’s E-LINE 
(point-to-point) and E-LAN (multipoint-to-
multipoint) services are supported. KSP is 
designed to work well for cases of point to point 
and small group connectivity, and the devices 
connected are typically fixed and stable in 
deployment. Over 90% of the CAs deployed are 
expected to be point-to-point, with the average 
group CA comprising 5 members, with very few 
groups of more than 30 members. 
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MACsec Summary 
This section provides a brief overview of 
MACsec. 

6.1. What MACSec does 
MACsec secures a LAN. In many cases this 
means a physical point-to-point link. In others a 
number of LAN equivalents may be realized by 
multiplexing over a physically shared media. In 
another a virtual LAN may be provided at many 
customer sites by a provider bridged network. In 
all these cases the service provided by MACsec 
is that used by bridges and end stations. 
Securing a LAN is different from securing 
individual connections amongst stations 
connected to that LAN35. All that MACsec 
guarantees is that integrity and confidentiality 
will be preserved amongst the set of stations 
authorized to connect to the LAN. 
An important goal of MACsec is not to change 
the way that bridges and routers work, while  
enabling them to apply policies36 to the data that 
they forward. This means that MACsec itself 
should not interfere with the normal connectivity 
provided by a LAN to authorized stations. 

6.2. Connectivity Associations 
The authorized stations that are attached to a 
common LAN compose a MACsec secure 
connectivity association (CA), and prove their 
mutual authentication by exchanging messages 
that are integrity protected with a common 
master key, the CA Key (CAK). 
The CAK may configured in each station out-of-
band, using a local command line interface for 
example. Alternatively the CAK may be the 
direct or indirect result of executing a key 
agreement, key exchange, or authentication and 
authorization protocol. If the CA is point-to-point 
(i.e. has only 2 members) , the CAK may be the 
pair-wise master key (PMK) generated by EAP 
with one of the members as the EAP peer and 
the other as the authenticator. If the CA 
comprises three or more systems with a full or 
partial mesh of PMKs, a CAK can be assigned 
and distributed to each of the members using a 
trivial spanning tree protocol. 
Since MACsec secures full (i.e. symmetric and 
transitive) connectivity between the members of 
a CA using symmetric key cryptography37, all the 
members of the CA possess all the secure 
association keys (SAKs) used to support the 
CA. So the requirement for transitive 
connectivity ends by implying transitive trust 
                                                      
35 If this is what is wanted from MACsec, then separately secured 
LANs need to be provided and interconnected with a trusted 
bridge or router. 
36 The policies should be based on the authorization accorded to 
the stations connected to each LAN 
37 For the picky it also has to be noted that MACsec does not use 
more than one key to integrity protect a frame, and that each 
frame handed to MACsec by its user is only sent once. 

within the CA – if A trusts B and B trusts C, then 
A necessarily trusts C. This transitive trust is 
captured by the single CAK. An attempt to 
enforce partial connectivity to match a partial 
mesh of master keys would cause client 
protocols to behave oddly, if not incorrectly. 
Equally the direct use of a mesh of keys opens 
up the prospect of complex accidental failures. 

6.3. Secure Channels 
In order to provide unique cryptographic nonces 
and replay protection, the data traffic from each 
transmitter in an CA is identified as belonging to 
a separate secure channel (SC). Each SC is 
supported by a succession of secure 
associations (SAs). One SA is replaced by 
another with a different secure association key 
(SAK) when the packet number (PN) space for 
an SA is close to exhaustion, or when the CAK 
is changed. SAKs may be unique to an SC, or 
shared amongst some or all SCs in the CA. KSP 
shares SAKs so that each participant in a CA 
only has to be able to receive and transmit using 
the same number of cryptographic keys  as 
required for a point-to-point CA. 

6.4. Changing Keys 
KSP allows both SAKs and CAKs to be changed 
without disrupting the connectivity between 
stations, although one reason for changing a 
CAK is to create a new CA that excludes 
members of a prior CA. 
While addressing the requirements of multipoint 
CAs, KSP is simple enough to be used 
unchanged if the CA is only point-to-point. This 
maximizes interoperability and helps 
considerably in those cases where a CA is 
initially believed to be point-to-point but turns out 
to be multipoint. KSP has to work well in an 
environment where stations are being powered 
up and down and different systems take more or 
less time to become functional after power up. 
  


