

Rev 0.5 5/29/2006 5:38 PM

 A distributed fault-tolerant group key selection protocol
for MACsec

Mick Seaman

This note describes a Key Selection Protocol (KSP) that allows MACsec
participants to prove mutual authentication through common possession
of a master key, agree on SAKs, and ensure that data traffic and keys
are neither being delayed nor replayed.
This second revision changes the way that KSP messages are
themselves protected. It also allows for key selection and distribution by
an elected group leader—as an alternative to independent key derivation
by each participant using the public key contributions and the secret
master key. The key contributions themselves are retained when key
distribution is used, as they provide a reliable indicator from each
participant that a fresh key is required, and a reliable indicator to each
participant that a fresh key has indeed been provided.

1. Introduction
KSP is designed to meet the need for the
participants in a IEEE 802.1AE MACsec secure
connectivity association (CA) to agree data keys
(SAKs) for symmetric shared key cryptography. 1
KSP assumes an attacker can copy any frame
sent by any participant, can selectively prevent
delivery to some or all participants, can transmit
arbitrary frames to arbitrary participants2, and
can control physical connectivity and power to
each participant. KSP maintains secure
connectivity against attacks, using some or all of
these mechanisms, short of a “wire cutting
attack” that simply denies service. KSP also
supports procedures designed to maintain
security after theft of equipment containing keys.
KSP’s requirements are driven by MACsec’s
role in underpinning basic network connectivity
in enterprise and provider bridged network
(802.1ad) environments. MACsec secures
individual LANs, or virtual LANs over a bridged
network, protecting the infrastructure as well as
access to that infrastructure3. Connectivity may
need to be maintained for a number of years,
with individual participants in the CA being
powered up or down or being changed during
that time. Key selection during times of network
change can depend neither on the presence of a
previously selected distinguished participant nor
on connectivity from that or any other participant

1 The initial KSP proposal (4/7/2004) used the MI.MN tuples as
described in this note to prove liveness and protect against delay
and replay, but supported central distribution of a time-bounded
key by an elected (or recognized) participant. Following
discussion this was changed (10/04) to use a key contribution
methodology. The development of KSP has benefited from
discussions with John Viega, David McGrew, and Brian Weis
though this does not necessarily signify their approval for any
particular part of the design. All errors and omissions are my own.
2 The combination of these possibilities covers misordering of
messages, which can also happen quite unintentionally.
3 MACsec does not attempt to supplant IPsec by providing end to
end security.

to an authentication server. However it is highly
desirable that authentication and authorization
be manageable under a AAA framework. Each
KSP Entity starts its operation with a pre-shared
master key known as the CAK (connectivity
association key), whose mutual possession
authenticates participants in the CA. The CAK
will often be a PMK distributed by
802.1X/EAP4,5.
KSP uses the CAK to agree a sequence of
SAKs, while ensuring that an SAK with a PN
(packet number) combination is never repeated,
either accidentally or as a result of a deliberate
attack, as it serves as a cryptographic nonce in
MACsec. KSP manages the use of overlapping
SAKs to provide continuous connectivity when
they are being changed. Connectivity is also
maintained through changes of CAK.
A CA may change from being logically point-to-
point (with only two participants or members) to

4 Each participant can simultaneously participate in more than one
instance of KSP, each distinguished by a separate CAK. This is
important because authentication protocol (EAP in particular)
does not provide mutual confirmation of the delivery of PMK to the
mutually authenticated parties, or procedures to support
symmetrical networking scenarios with delivery of a single PMK,
or mechanisms robust against timer choices that reliably deliver a
single PMK in the face of packet loss, delay, and transmission
retry in the network supporting the EAP exchange. The way to
check that all parties have a PMK is to attempt to use it, and to
pick between two PMKs that any participant may find equally
attractive is to try both and select one that works.
5 KSP can also be used with a PMK as its CAK for pair-wise
delivery of a (the same) group CAK to each CA member. This
aspect of its operation needs to be explained further, but requires
only minor additions to the key distribution additions introduce in
this revision. It provides a simple way for a Supplicant to either
participate in a point-to-point CA or to discover that it is to join a
group CA, and allows an Authenticator to add a Supplicant to a
group CA, and to furnish the members of the group CA with fresh
CAKs.

Rev.0.5 5/29/06 5:38 PM 2

a group CA (three or more members) without
disrupting connectivity (for at least some CA
members). Group CAs support multicast
transmission under a single key to all group
members. KSP selects common keys for all the
group members, to avoid receivers having
separate key tables for every transmitter.
KSP uses a single message type. KSPDUs
(KSP protocol data units) are sent periodically
by each participant, and as needed subject to
rate limiting controls. Each KSPDU is sent as an
Ethernet frame with a well known multicast MAC
address as its destination address, and supports
mutual discovery of participants attached to the
same LAN as well as conveying key information.
Each KSPDU is integrity protected with the
secret master key (CAK), so only stations
possessing that master key can generate new
KSPDUs and tampering by attackers can be
detected. Each protocol participant includes a
Member Identifier (MI) and a Message Number
(MN), unique for messages transmitted using
that identifier, in each transmitted KSPDU.
These MI.MN tuples are used to prove liveness,
protecting against replay or delay of KSPDUs.
Using this secure transport, each participant
transmits a Key Contribution (KC). The KCs of
all the active (as proved by the transport)
participants are combined under a pseudo-
random function using the secret CAK to
generate an SAK. The SAK is identified by a
Key Identifier (KI) that is simply the exclusive-or
of all KCs contributing to the SAK. The status of
each participant relative to each SAK⎯ its ability
to receive and or transmit using the key, the
binding of the key to a MACsec association
number (AN), and the lowest PN within an
acceptable delay window ⎯ are transmitted with
reference to the KI.
This revision of KSP also provides for a single
participant to select and distribute an SAK to all
the other participants. At the time of writing it is
not clear whether this should be a dynamic
option, i.e. selectable during the course of
operation of a single instance of KSP, a static
option i.e. one that requires preconfiguration of
all the participants, or a protocol design
decision. Input to KSP development has
variously suggested that it is essential that each
participant contribute to the key, and on the
other hand that it is essential that the key be
chosen by one participant so that it can be
distributed by already approved distribution
methods. For the present it is sufficient to note
that a number of protocol mechanisms underpin
both approaches. If the key contribution method
were to be removed a different KI format might
be chosen and the KCs (which act as requests
for a new key) might be shorter, but the KIs and
KCs or their renamed equivalents are still
required.
When an SAK is chosen and distributed by a
single participant, the Member Identifiers are
used to choose that participant. A new SAK is
only advertized by a participant (the CA Leader)
that believes it possesses the highest priority

MI6 of all those proven to be live. Just as for the
key contribution method (see below)
transmitters only start to use the new key when
all currently live receivers have installed it. Each
participant’s Key Contribution serves as a
prompt to request a new key7. The CA Leader
distributes a fresh SAK whenever a participant
joins the CA, leaves the CA, or changes its KC.
The KI of the distributed key is part of the
KSPDU TLV that delivers the wrapped up key.

2. KSP Overview
This section provides an overview of:
• the secure transport, including

• addressing and protocol identification
• integrity protection of KSPDUs
• proof of master key possession and

timeliness
• message ordering

• use of the secure transport, including
• key (SAK) agreement and calculation
• SAK installation, use, and replacement
• data delay protection

Figure 1 summarizes the format and use of each
of the fields of a KSPDU8. Figure 2 is an object
diagram of a KSP Entity, i.e. that part of a
protocol participant that actually implements
KSP.
NOTE—Figure 1 does not currently show the
key distribution TLV, which is an optional
elements preceding the null terminator and ICV.
This TLV comprises a key identifier and the
SAK, with the latter protected by the AES Key
Wrap.

One of the things that the object diagram is good
at depicting is the scope and containment of the
identifiers and other parameters used by KSP.
Whenever an identifier is described as ‘const’
within its immediately containing object, it can
only be changed by destruction of that object
and all the others that it contains followed by
creation of a new object. Following sections
detail the use, creation, destruction, and scope
of each of the protocol parameters and objects.
Figure 10 is a state machine, drawn using the
conventions commonly used by 802.19, that
describes the life cycle of an SAK from the point
of view of an individual KSP participant. Figure 8
is the state machine that generates fresh SAKs.
The object diagram of Figure 2 is realized by

6 Numerically the highest, with the MIs being interpreted as
numbers in network byte order.
7 An alternative, which may be preferable if there is no key
contribution
8 Since the last published KSP revision the integrity protection of
KSPDUs has been changed, and the IV field previously included
in the PDU has been removed.
9 Derived from those used by 802.3.

Rev.0.5 5/29/06 5:38 PM 3

C++ code and an accompanying English
language specification that realize the state
machines and other processing requirements of
the protocol. Taken together these comprise the
definitive specification of KSP.

2.1. Terminology
Active ⎯ used to describe a Peer that has
proved current possession of the CAK to the
Actor . A synonym for Live.
Actor ⎯ the KSP participant being discussed or
undertaking the action described.
CA ⎯ secure Connectivity Association, a
MACSec term meaning the subset of stations
attached to a LAN that are mutually
authenticated and authorized, and use MACsec
to exchange data to the exclusion of
unauthorized stations. Also used to describe the
symmetric and transitive connectivity provided
between the stations.
CAK ⎯ a master key, distributed to the potential
members of the CA prior to the operation of KSP
by 802.1X/EAP or other means, possession of
the serves to mutually authenticate the CA
members. Different instances of KSP, with
different CAKs, can be simultaneously active.
CKI ⎯ an identifier for the CAK used to protect
a particular KSPDU.
DA ⎯ destination MAC address.
EUI ⎯ an Extended Unique Identifier, a value
derived from an OUI (Organizationally Unique
Identifier) allocated by the IEEE Registration
Authority. Historically an OUI was a MAC
Address block and an EUI-48 was a 48-bit MAC
Address.
ICV ⎯ Integrity Check Value.
initialize, initialized ⎯ returning the KSP entity
to its initial or power on state. In this state the
entity only knows the CAK, CKI, the SCI and any
MAC Addresses to be used.
KC ⎯ Key Contribution. A random nonce (128
bits) independently chosen by each KSP
participants as input to the pseudo-random
function of the CAK used to calculate each SAK.
Also used to drive the distribution of a fresh SAK
when that is chosen by the CA Leader.
KI ⎯ Key Identifier. The exclusive-or of the Key
Contributions of an actor’s Active Peers.
Leader ⎯ the active CA member with the
highest priority .
Live ⎯ a synonym for Active.
LKI — Latest (or proposed) Key Identifier.
LLPN — The LPN for the key corresponding to
the LKI.
LPN — Lowest acceptable Packet Number, a
field in a KSPDU for each of the possible keys
that reflects the lowest PN used in a MACsec
data frame protected by he key and transmitted
using the actor’s SC.

MAC ⎯ Media Access Control. An abbreviation
used throughout the LAN industry and in most
IEEE 802 standards. The term Integrity Check
Value (ICV) is used in MACsec for an unrelated
security concept that others associate with the
acronym MAC.
Member Identifier (MI) ⎯ a nonce10 chosen by
the actor to identify itself in subsequent protocol
exchanges.
message ⎯ synonymous with KSPDU.
Message Number (MN) ⎯ a number starting at
1 and incrementing to 232 – 1 that serves to
uniquely identify and order each KSPDU within
the context of a Member Identifier. An MI.MN
tuple is a nonce for the KSPDU.
OKI — Old Key Identifier.
OLPN — The LPN for the key corresponding to
the OKI.
Peer(s) ⎯ (an)other KSP participant(s) attached
to the same LAN as the actor.
PN — Packet Number. In each MACsec frame
the PN is a nonce, i.e. is only used once for the
SAK.
SA ⎯ Secure Association, a term in general use
for the shared information that enables secure
communication between entities, but used in this
note in the particular sense that MACsec uses it,
i.e. the information and relationship between
entities that supports MACsec data transfer with
a single key. Also the acronym for a source
MAC address.
SAK ⎯ Secure Association Key, a MACsec
term for the key used by one of the SAs that
compose an SC.
SC ⎯ Secure Channel, a MACSec term
meaning the sequence of secure data frames
transmitted by a MACsec participant to the other
members of the CA.
SCI ⎯ Secure Channel Identifier, a MACsec
term meaning an EUI-48+16 or EUI-64 identifier
for an SC that can form part of the MACsec data
frame.

2.2. Addressing
Each KSPDU is transmitted using the MAC
Internal Sublayer Service (ISS)11. The
destination MAC address (DA) is a multicast
address from the set of reserved addresses that
are filtered by standard bridges. Not only does
this correctly bound the discovery of other
potential KSP participants to those attached to
the same LAN or virtual LAN, but also means

10 Frankly I get confused by the latitude allowed to the term nonce
in security documentation. The Member Identifier is clearly used
for a period of time. The only sense in which it is ‘used once’ is
that when it is chosen again any previously used value is
vanishingly unlikely to be reselected.
11 The ISS (Internal Sublayer Service) specified in IEE Std 802.1D
Clause 6 is supported by all 802 LAN types. For those not
interested in the level of detail and flexibility the ISS provides each
KSPDU can be simply regarded as an Ethernet frame.

Rev.0.5 5/29/06 5:38 PM 4

that an attacker cannot launch an attach from
anywhere in a bridged network but has to attach
directly to the LAN to be attacked, or at least
subvert a station attached to that LAN.
On physical, as opposed to virtual, LAN media
the destination MAC Address used with each
KSPDU is the Bridge Group Address specified
in IEEE Std 802.1D.
The source address (SA) is that of the
transmitting station.
The Ethertype is allocated to identify KSP.
Each frame’s DA and SA are included in the
KSPDU integrity check (see below).

2.3. KSPDU integrity protection
Integrity protection of each KSPDU is
accomplished as follows. The octets of the
destination and source MAC addresses, in
canonical format order, are concatenated with
the KSPDU proper, beginning with the Ethertype
allocated to identify the protocol, and the
resulting octet sequence (M) is protected with
CMAC using AES-128 and a subkey derived
from the CAK12. Specifically a 128 bit Integrity
Check Value (ICV) is added to the KSPDU:
 ICV = AES-CMAC(K,M,128)
where K is derived from the CAK as follows:
 K = AES-ECB(CAK,0x1)
where the CAK is the AES key and the
encrypted data is a single 128-bit block with the
value ‘0x1’13.
The CAK is identified by the CA Key Identifier
(CKI), a 64-bit value that is either an EUI-48
(such as a MAC Address) plus a further 16 bits
allocated by the entity identified by the EUI-48,
or is an EUI-6414.
Apart from an SAK that is separately encrypted
within the optional key distribution TLV15,none of
the information in the KSPDU needs to be kept
confidential. This fact is used to facilitate
observation and, if necessary, debugging of
protocol behavior by operational personnel
without having to provide them with the CAK.

12 A suggested by Brian Weis. See Brian’s LKS specification and
M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication”, NIST Special
Publication 800-38B, May 2005
13 An explanation of why it is necessary to ECB the CAK before
using it in CMAC would be useful. I think it is because the CAK
has also been used in the AES Key Wrap, and the ECB is being
used to derived subkeys from the CAK rather than relyiing on any
proof that two different direct uses of the CAK can never cause an
exposure.
14 There are alternatives, as the CKI only needs to have a very
good chance of uniqueness. Collisions cause failures to
communicate, not breaches of security. A hash of a key name
could be used. 64 bits was chosen previously to align the initial
PDU format with that for MACsec when GMAC protection of
KSPDUs was advocated. This is no longer a consideration.
15 Used when SAKs are chosen and distributed by a CA Leader,
rather than being computed from the KCs by each participant.

Most importantly this means that a potentially
vulnerable interface or set of procedures do not
have to be provided to selectively disclose the
CAK for first level network maintenance.
Additionally the Key Identifier (KI, see below)
conveyed in KSPDUs serves to uniquely
identify, to a high probability, the key actually
agreed by KSP participants without giving the
attacker any information about that key. The KI
together with other information in KSPDUs can
be communicated insecurely to someone who
has knowledge of the CAK if it proves really
necessary to determine the actual agreed value
of the SAK.

2.4. Proving liveness
Each KSP participant identifies itself within the
protocol by a random16 number, its Member
Identifier (MI). Each transmitted KSPDU
includes the actor’s Member Identifier and a
Message Number (MN). MN is initialized to 1
and is incremented in each KSPDU sent. The
actor records the last MN used at regular
intervals so that it knows the range of MNs it has
used within the last one or two seconds.
The Member Identifier is randomly chosen from
a sufficiently large number space17 that it is
vanishingly unlikely to have been previously
used in combination with the same CAK. Each
KSPDU not only contains the actor’s MI and the
highest value of MN ever used (up to the time of
transmission) with that MI, but also lists of
MI.MN tuples for each of the other participants.
These provide proof of current possession of the
CAK to the actor’s peers as follows. If a peer P
(say) has transmitted MIP.MNP within the last
second and subsequently receives that tuple in
a message from the participant A identified by
MIA with message number MNA, and integrity
protected by the CAK, then P knows that A18
possesses the CAK and has transmitted that
message (and any others received with MIA and
MN > MNA) within the last second.
A peer that has proved current possession of
the CAK to the actor is referred to as “live” or
“active”, and the proof itself as “proof of
liveness”. A peer that has not proved current
possession of the CAK is referred to as a
“potential” peer. The MI.MN tuples for an actor’s
peers is correspondingly organized into two lists
in transmitted KSPDUs : a “Live List” and a
“Potential List”. This allows a participant that
has just been attached to a LAN or re-initialized
to acquire all the data it needs to prove liveness
from by receiving a single KSPDU and including

16 A number chosen so that its distribution across all KSP
participants is indistinguishable from random.
17 96 bits in the current specification, though this could be easily
increased if that is thought too small.
18 Strictly speaking P knows that some station in possession of
the CAK has sent the message with MIA.MNA. Like all protocols
this cannot work if authorized participants don’t follow the protocol
but send bogus information. The essential point is that an attacker
can’t use old replayed messages to inject out of date information.

Rev.0.5 5/29/06 5:38 PM 5

all the tuples in the “Live List” in its own
“Potential List”. Separation of the two lists avoids
the members of the CA keeping alive the
memory of a long departed participant.
The Member Identifier for a participant is chosen
afresh whenever the Message Number space is
exhausted, or when a “collision” is detected, i.e.
a participant receives a PDU that is did not
transmit with its own MI as the transmitter’s MI.
Both of these are unlikely events, as the MN
space should last for over 10 years even at the
transmission limiting rate of 10 KSPDUs per
second ⎯ far in excess of any reasonable policy
for changing the CAK, which creates a new KSP
instance with a fresh MI ⎯ while the change of
an MI collision even in a very large CA of a 100
members is less than 1 in 290. However the
mechanisms for change are included to avoid
the proof of protocol correctness depending on
can’t happen events ⎯ it is an axiom of sound
protocol design that convergence to a known
good state from any state should happen within
known bounded time given correct protocol
execution during that time without regard to prior
history and arguments that such and such a bad
state is unreachable (“can’t happen”).

2.5. Message ordering
Since the Message Number (MN) increments
with each transmission for a participant
identified by a given Member Identifier, KSP
allows each authorized participant to convey an
ordered sequence of messages to other
participants attached to the same LAN and
possessing the same CAK, while allowing
delayed or replayed messages to be discarded.
This allows recipients to readily determine when
information conveyed by the protocol should and
should not replace information already received,
and largely avoids the need to wait for timeouts
to age out old information.

2.6. KSP Transmission
KSP transmissions are rate limited and, if a
station has received proof of liveness from more
than one other station, subject to a small
random jitter. Normally transmissions occur at
roughly ½ second intervals, but the rate limiter
allows a short burst, sufficient for connectivity to
be established without any timer delay for a
point-to-point CA.
If delay bound support is not required the
periodic transmission rate can be reduced to
one every 5 seconds.

2.7. SAK agreement
This revision of this specification supports two
different methods of choosing SAKs. In the first,
“SAK calculation”(2.8), all the participants
independently apply a pseudo-random function
that uses the secret CAK to the key
contributions publicly distributed by all live
participants. In the second, “SAK distribution”,

the CA Leader—chosen by its SCI and MI—
distributes the SAK to the other participants.
In both methods the key contribution KC is
changed by a participant whenever it wants to
prompt for the distribution of a new key,
although a CA Leader will attempt to anticipate
the need for new keys arising from simple
exhaustion of MACsec PN space by any
participant. In both cases each participant
maintains a record of all the SAKs calculated
while it is using a given KC19 value, together with
the highest Packet Number (PN) used as part of
the MACsec IV when that SAK is protecting a
MACsec frame. A new KC is randomly chosen
when the participant is reinitialized and when
the PN space for any of the derived SAKs is
close to exhaustion. A new KC is also chosen
whenever the CAK or Member Identifier is
changed.

2.8. SAK calculation
When the SAK calculation method is used, each
KSP participant independently calculates SAKs
as a pseudo-random function of the CAK and
the 128-bit KCs from all active peers.
The proposed prf is a hash that uses the CAK
and the sequence of octets obtained by
concatenating all the KCs together in the
numeric order of the Member Identifiers of the
contributing participants, with the greatest first.
This revision suggests that the prf be the
essntially the same as that used to generate the
ICV for integrity protecting KSPUs. Suggestions
for a better prf are most welcome.
Specifically:
 SAK = AES-CMAC(K,M,128)
Where M comprises the concatenated KCs, and
K is derived from the CAK as follows:
 K = AES-ECB(CAK,0x2)
where the CAK is the AES key and the
encrypted data is a single 128-bit block with the
value ‘0x2’20.

19 It is an illusion that use of central distribution removes this
requirement. If a participant simply forgot prior keys when a
Leader issued a new key it would be easy to mount an attack in
which the participant was first allowed to see frames from one
Leader, then only from another, and then from the first again. In
the absence of memory of prior keys and of a protected
acknowledged method for ensuring that a new key has been
distributed, such a participant could be induced to repeat the use
of an SAK, PN tuple. Even if the distributed SAK is not a function
of the KCs, requiring that a Leader change the SAK when a new
KC is seen and reflecting that KC back to the participant in the
KSPDU with the distributed SAK ensures that the participant
knows what history has to be retained, and gets a chance to
purge that history.
20 An explanation of why it is necessary to ECB the CAK before
using it in CMAC would be useful. I think it is because the CAK
has also been used in the AES Key Wrap, and the ECB is being
used to derived subkeys from the CAK rather than relyiing on any

Rev.0.5 5/29/06 5:38 PM 6

A separate Key Identifier (KI) for the key is
calculated as the simple exclusive-or of the KCs
from active peers. Two KSP participants know,
to within a very high probability, that they have
agreed on the SAK if they are both advertising
the same Key Identifier, but the KI provides no
information to an attacker that could not be
otherwise learnt from observing KSPDUs. In the
absence of knowledge of the CAK, an attacker
has no way to calculate the SAK using the KCs
or KI. Moreover the attacker does not know the
relationship between the SAKs produced by
selectively removing KCs from the calculation by
blocking some of the KSP communication.

2.9. SAK distribution
When the SAK distribution method is used, any
participant that has one or more live peers and
considers itself to be the CA Leader, or has no
live peers but has potential peers and considers
itself to be the CA Leader even if those potential
peers were live, will distribute a randomly
chosen SAK21.
The SAK and an accompanying Key Identifier KI
are distributed in the optional key distribution
TLV in KSPDUs. These have a type code 0x01
(in 2 octets), followed by a length of 0x04 (in two
octets), followed by the KI (in 8 octets), followed
by the AES Key Wrap protected SAK in 24
octets. The only wrapped data is the SAK itself.
The key wrap Key Encrypting Key (KEK) is a
sub-key derived from the CAK as follows:
 KEK = AES-ECB(CAK, 0x0)
where CAK is an AES key, and the encrypted
data is a single 128-bit block with the value
‘0x0’. The AES Key Wrap default IV defined in
[10] MUST be used22.
If the CA Leader itself decides to distribute a
new key it should change its own KC, and just
as for the SAK calculation method, the KI
distributed should be the exclusive-or of all the
KCs. There is no dependency on this choice of
KI, and it could be randomly chosen, but using
the suggested value makes it easier to debug
protocol operation and has no security
downside.23

proof that two different direct uses of the CAK can never cause an
exposure.
21 Better words than “randomly chosen” are required here. The
usual stuff. Unguessable, even with the knowledge of all past
history.
22 This part of the specification borrowed from Brian Weis’ LKS
specification.
23 The SAK distribution method does not provide as tight a
guarantee that a fresh key has indeed been delivered as does the
SAK calculation method. Each participant needs to check that the
Leader considers itself to be live, and needs to retain the
knowledge of a past key for at least the maximum period for which
it considers the Leader to be live after the participant has changed
the KC it was currently using when that key was distributed. With
the SAK calculation method keys based on old KCs could be
discarded as soon as that KC was discarded.

2.10. SAK installation and use
When using KSP each MACsec participant
transmits and receives using at most two SAKs
at a time, no matter how many members a CA
has. Two SAKs are required to ensure
continuous connectivity when one changes.
Different participants may change to a new key
for transmission at different times and can have
already protected frames buffered locally or
within the bridges that support a virtual LAN.
When the participants in the CA and their KCs
have not changed for a while, they will all be
transmitting and receiving using the same SAK
and will have the spare resource to devote to a
new SAK should one be required, as will a
participant that has just be initialized or attached
to the LAN.
Given the available resources, any in use SAK is
advertised in the actor’s KSPDU as the Old Key
Identifier (OKI) together with the MACsec
Association Number (AN) used together with the
MACsec SCI to identify the SA used to transmit
data frames protected with the SAK, and the
Latest Key Identifier (LKI) is used to advertise
the KI calculated using the current KCs from the
actor and all active peers (or the KI distributed
by the CA Leader if key distribution is being
used).
A new SAK corresponding to the current LKI
value will be calculated and installed, i.e.
submitted to the MACsec entity for any
precalculation of tables and configuration of
hardware that may be required, when the SAK
calculated from the KCs of all active peers
differs from that currently in use, and either:
a) there is at least one active peer, no potential

peers, and there is no previous key being
used for receive or transmit; or

b) all active peers are advertising the same LKI
as calculated by the actor.

At this point the actor assigns the next available
AN to the new SAK. Once the key has been
installed, the potential MACsec SAs are installed
⎯ specifying the receive SCI, AN, and
acceptable Packet Numbers (PNs) for each of
the active peers ⎯ and a KSPDU is sent
indicating that the actor is prepared to receive
using the key corresponding to the LKI.
When all active peers have indicated their ability
to receive using the new SAK it can be used for
transmission. Once a new key is used to
transmit, KSPDUs are used to indicate that
reception is disabled for the prior key (if any)
and the key is uninstalled after a short delay
sufficient for reception of any frames already
transmitted, and for the other members of the
CA to start using the new key. The station
machine of Figure 4 specifies the life cycle of
each SAK.

2.11. Data delay protection
Along with each of its key identifiers, the LKI and
OKI, each participant advertises lowest

Rev.0.5 5/29/06 5:38 PM 7

acceptable packet numbers (LLPN, OLPN) for
each of the keys. Each of these reflects the
lowest PN used within a one second window.
Each of the participant’s peers uses the time
bounds provided by its proof of liveness, through
reflection of their MI.MN tuples, together with the
LPN values to discard delayed traffic.
Enforcement of delay bounds necessitates
transmission of KSPDUs at frequent (½ second)
intervals, to meet a maximum data delay of two
seconds while minimizing the chance of
connectivity interruption due to the possibility of
lost or excessively delayed KSPDUs. KSP can
operate without data delay protection, lessening
the receive processing requirements in large
CAs. However one of the ways to disrupt overall
network stability is to attack the configuration
protocols that MACsec is designed to protect by
alternately delaying and delivering their PDUs,
typically with cycle times in the range 4-30
seconds. Such attacks can cause effects that go
beyond the immediate LAN. If data delay
protection is not used, other procedures should
be used to minimize the opportunity for such an
attack.

Rev. 0.5 5/29/2006 5:38 PM 8

Member Identifier (MI)

Field
Size
(bits)

48Destination Address

Source Address 48

KSP EtherType
16

16

Octet
posn.

0

Message Number (MN)

64

CKI 64

32

128Key Contribution (KC)

Live Peer List/List Length

SCI

Member Identifier

Message Number

Member Identifier

Message Number
Potential Peer List/List Length

Live List Length (octets)

96

Member Identifier

Message Number

Member Identifier

Message Number

0000 0000 0000 0000

16

16

Potential List Length (octets)

32

96

96

32

128

32

2

90 +
 16*Live Peers

88

36

32

20

12

4

110 +
 16*Live Peers +

 16*Potential Peers

ICV

G
M

AC
 Integrity Protection

Latest Key Identifier (LKI)

Old Key Identifier (OKI) 128

128 52

68

LAN tx dpis OAN rxtxisVersion

Latest Key - Lowest Acceptable PN (LLPN)

Old Key - Lowest Acceptable PN (OLPN)

16

16

70

86

90

96 104 +

92 +
 16*Live Peers +

 16*Potential Peers

106 +

Multicast address, confined by bridges to a single LAN.

Use (or not) of Latest and Old Key fields below, if used the
MACSec association number (AN) bound by the actor to each
key, and whether receiving/transmitting using the key.
Identifies the CAK (secure Connectivity Association Key), i.e. the
master key used to GMAC protect this KSPDU. MAC address
based (EUI-48) so can be allocated by system managing master
keys. Persists across power cycles/reboots/system resets, while all
other recorded info apart from MAC Address/ SCI assumed lost.

Destination address integrity protected. Makes it hard to
launch an attack from a distance as address will not pass
through bridges, but cannot be changed on captured frames.

MAC address (EUI-48) based Secure Channel Identifier used
when transmitting MACsec data frames. Receivers bind SCI,AN
to selected SAKs (Secure Association Keys) for MACsec.

Integrity protected frame in clear allows debug/
attack investigation by field operations personnel
without need to disclose/ provide disclosure of CAK
(integrity protecting master key).

Random nonce, generated at reboot/system initialization. Also
reselected if collision detected (station with other SCI using
same nonce), or Message Number space exhausted.

Nonce, incrementing from 1 when new MI generated. Actor
records values at intervals to support timeliness verification
(see below). Good for 13+ years before new MI reqd.

Random nonce, generated at reboot. Reselected whenever
MACsec data PN (packet number/nonce) for selected data key
(SAK) near exhaustion. Input to pseudo-random function using
CAK to generate SAK or prompt to Leader to distribute.
XOR of all KCs currently input to SA. Probably uniquely identifies
selected SAK but provides no info to attacker .Protocol converges
even if collisions, may be data packet loss. SAK selected and
receiving initiated when at least one LIve Peer, and no Potential
Peers , or all Live Peers agree LKI. Transmit initiated when all
Live Peers report receiving.
Old SAK used to transmit while latest being selected, retained
after transmitting on new SAK to collect frames of differing
priority and allow others to move to new SAK. Explicitly
identified to ensure no problems if participant loses messages
when LKI becomes OKI, and new LKI calculated soon after,
and to clarify result of group merge while two LKIs in selection.

Reflecting received identifiers proves liveness to others.
Reflecting last received message number proves timeliness to
others, defeats ‘delay frames’ attack. If no timely messages
(max delay 2 - 10 secs) from participant, will be removed from
Live Peer List and SAK calculation and reception stopped.

Separately identifying “Live Peers’ i.e. participants that have
proved liveness and timeliness to actor, from “Potential Peers”
to which actor will respond to prove own liveness, allows
participants quicker retransmit when apparent lost messages
have defeated their proving liveness. Also allows Potential
Peer List to be seeded from others Live Peer List (speeds
convergence) without keeping old participants/Member
Identifiers in circulation for ever.

Terminates PDU while allowing TLV extension for future revision.

CMAC ntegrity Check Value calculated using CAK (master key)
allows each participant to prove possession of the master key,
and prevents message modification by attackers.

Bounds data transit delay, particularly where priorities/drop
precedence mean no PN based data replay protection.

rxic

Figure 1 — KSPDU Format and Fields

Rev. 0.5 5/29/2006 5:38 PM 9

3. Model of operation
Figure 2 is an object model of part of a KSP
participant, including the KSP Entity itself and its
relationship to the MACsec Entity (SecY). Figure
3 (tbs) summarizes the notation used, which
follows UML 2.0 conventions.
The KSP Entity forms part of the Key Agreement
Entity, which in turn attaches to the Uncontrolled
Port provided by the SecY. Each KSP Entity can
support a number of KSP instances, each with a
fixed CAK and corresponding CKI. Each KSP
instance maintains its own actor and list of
peers.

Throughout the diagram objects with ‘const’
attributes retain those attributes throughout their
life. Changing those attributes requires
destruction and recreation of those objects.
Thus changing the actor’s key contribution (kc)
discards the records of keys to which the kc has
contributed. Similarly changing the actor’s
member identifier results in resetting the
message number and choosing a new key
contribution. The records of keys generated with
the key contribution are not required unless
further keys are to be generated with the past
contribution, so either of the keys in use can
continue to be used until a fresh key with the
new key can be brought into service.

Ksp_frame : public Pdu

Kspdu : public Pdu

latest_key

old_key

latest_key

old_key

delay_bounds

life_bounds

KSP Objects <<KSPO 0.3>>

ki()
key()
all_active_agreed(pkn)
all_active_receiving(pkn)
rxpdu(Pdu *pdu)

Ksp // KSP instance
const cak
const cki

Peer
live_peer_while
potential_peer_while
include_kc
kc
sci

Participant
const mi
mn

*

Actor_key

*

SecY

Port : public Service

uncontrolled_port

Port : public Service
1

*

const kc
installed
next_PN
finish

Participant_key
const ki
an
receiving
transmitiing

4

old_next_PN

Peer_key
lowest_acceptable_PN

Actor_contribution
const kc

Contributed_key
ki
next_PN
in_use

mn

Actor
life(mn)

4
*

lsaps

Kspy // KSP entity

Gcm

Kay : public Service_user
sci
next_an

1

actor

{ordered} peers

kay

akc

keys
ksps

Figure 2 — KSP Object Model

Rev.0.5 5/29/06 5:38 PM 10

Figure 3 — object diagram notation

Rev. 0.5 5/29/2006 5:38 PM 11

This section specifies the operation of the KSP
Entity with reference to the object model of
Figure 2. The principal functional aspects of
operation are first described in relation to state
machines implemented by the objects, this
description is then followed by a detailed
specification of the variables and procedures
used by each object. Conformance to the
specification requires implementation of
externally observable behavior that corresponds
to the behavior of the specified objects and their
variables and procedures, including procedures
whose behavior is specified as corresponding to
that of the specified state machines.

3.1. State machines
The following objects implement the following
state machines, in addition to procedures that
perform simple processing or supply information
to other objects:
• Ksp — Ksp instance

• Receive Machine
• Transmit Machine
• Actor Creation Machine — instantiates

and refreshes actor (Actor object)
instances

• Actor
• Key Generation Machine — instantiates

new keys (Actor_key object) and
instantiates and refreshes the actor’s
key contribution (Actor_contribution
object)

• Actor_key
• Actor Key Machine

3.2. Receive KSPDU processing
The MAC Security Entity (SecY) notionally
provides all received frames to the users of its
Controlled Port. The Key Agreement Entity
(KaY) uses the services of an LLC Entity24,
selecting only those it is interested in as
identified by their Ethertypes, including KSP25
frames. These are submitted to the KSP Entity
(Kspy).
The KSP Entity first checks that the destination
MAC address is the assigned multicast address.
Then it extracts the CKI from the frame to
identify the KSP instance (Ksp object) that is the
intended recipient and its CAK. GMAC (GCM
Integrity Check) is used to validate the frame. If
successful the received frame is marked as
valid, the addresses and ICV removed, and it is
passed to the Ksp’s Receive Machine (Figure
4). This counts and discard invalid frames, and
processes the remainder as described below.

24 In keeping with recent 802.1 practice an LLC Entity is
considered to include Ethertype multiplexing/demultiplexing.
25 In keeping with standards practice an Ethertype will not be
assigned until the sponsor ballot stage is reached.

If the frame’s26 MI and SCI are the same as
those of the (receiving) actor, then the frame
has, in all probability, been loop backed to the
transmitter27 and is counted and discarded. If
just the MI is the same it seems that the unlikely
event (1 in 290 odd) of a duplicate MI has
happened. A count is incremented, the PDU
discarded, and the actor’s own MI changed by
deleting and recreating the Actor object and its
dependents This will disrupt connectivity if the
KSP instance is controlling the MACsec keys.
The most likely cause of duplicate MIs is a
broken pseudo-random number generator, so
the counted event warrants investigation.
The actor’s list of peers is searched for a match
with the frame’s MI. If the peer is found then its
recorded MN is compared with the frame’s MN,
and misordered or duplicated frames are
counted and discarded. The frame’s SCI is
checked against the recorded SCI recorded. If it
has changed the peer record is deleted, and
processing proceeds as if the frame were the
first received from the peer. A peer not found in
the list is added to it. Since key contributions
from live peers on the list are used ordered by
MI to calculate an SAK it is convenient, though
not essential, to keep the list ordered.
The potential life of the peer, i.e. the time the
peer record will be kept, (potential_peer_while)
is updated even though the peer has not yet
been checked for liveness. If frames from a past
peer are being replayed by an attacker the
minimum work should be done for each frame,
and maintaining the peer in the list achieves
that.
The peer record is updated with the receive MN,
so that it can be used to check for misordered or
duplicate frames with the same MI.
The frame’s live and potential peer list are then
scanned for the actor’s own MI. If it is found the
corresponding MN is compared to the actor’s
own records (life_bounds) of the time elapsed
since that MN was transmitted, and the time for
which the peer record should be considered live
(live_peer_while) is calculated.
If the peer is live then its key contribution may
be newly included or changed, forcing a key
recalculation. A live peer may not wish to
contribute to a new key, as indicated by the
include_kc flag in the KSPDU : it may have been
sent to play out the delay protection for frames
currently sent by a participant intent on
calculating new keys with a different KSP
instance and a more recent SAK.
Each participant indicates whether receivers
should apply delay protection to received data. If
delay protection is off, the peer is not
guaranteed to transmit KSPDUs sufficiently
frequently to allow delay bounds to be imposed.

26 Throughout this description the short hand “the frame’s MI” is
means “the MI used by the participant transmitting the frame”.
27 Active loopback is a curse and can easily stop a network
working. The damage done far exceeds its diagnostic potential.

Rev.0.5 5/29/06 5:38 PM 12

The receive key information for a live peer is
updated, including the keys used (as indicated
by the LKI and OKI key identifiers), their
associated SAs as identified by their association
numbers (AN), and lowest acceptable packet
numbers used to enforce delay protection.
The peers included in the live peer list included
in a KSPDU sent by a live peer are added to the
actor’s own list of peers if not already present.

If the current KI is to be recalculated as a result
of receiving the KSPDU then the actor’s Actor
Key Machines for both the latest and old key are
executed, as is the Key Generation Machine.
C++ code for receive processing follows (Figure
5).

Figure 4 — Receive machine

void Ksp::rxpdu(Pdu *received_pdu)
{
 Kspdu rcvd(received_pdu);

 if (!rcvd.valid) { rcv_event(Invalid_pdu) return; };
 if ((rcvd.sci == sci) && (rcvd.mi == actor.mi))
 { rcv_event(Loopback_pdu) return; };
 if (rcvd.mi == actor.mi)
 {
 this.change_mi(); rcv_event(Duplicate_mi) return;
 }; // broken psrng?

 Peer *peer = find_peer(rcvd->mi);
 if (peer != 0)
 {
 if (rcvd.mn < peer->mn) { rcv_event(Misordered_pdu) return; };
 if (rcvd.mn == peer->mn) { rcv_event(Duplicate_pdu) return; };

 if (rcvd.sci != peer->sci){ rcv_event(Peer_sci_changed);
 delete peer; peer = 0; };
 };
 if (peer == 0)
 {
 peers.push_back(Peer(this, rcvd.mi, rcvd.sci));
 peer = &(peers->last());
 };

 peer->potential_peer_while = potential_peer_life;
 peer->mn = rcvd->mn;

 Ticks life = actor->life(rcvd->find_me(actor->mi));
 if (life > peer->live_peer_while) peer->live_peer_while = life;

 if (peer->live_peer_while != 0)
 {
 if ((peer->include_kc != rcvd->include_kc) || (peer->kc != rcvd->kc))
 bool recalculate_key = true;

 peer->include_kc = rcvd->include_kc;
 peer->kc = rcvd->kc;

 peer->delay_protect = rcvd->delay_protect;

 peer->rx_keys(&rcvd);

 add_potential_peers(*(rcvd->peers)); // from live peer's live list

 if (recalculate_key)
 {
 if (old_key != 0) old_key->actor_key_sm();
 if (latest_key != 0) latest_key-> actor_key_sm ();
 key_generation_sm();
 };
}; };

BEGIN

RECEIVE_READY

<<RXM 0.2>>

RECEIVE
rxpdu(received_pdu);

rcvdMsg = false;

rcvdMsg == true

UCT

Rev.0.5 5/29/06 5:38 PM 13

Figure 5 — KSPDU receive processing

Figure 6 — Transmit state machine

Figure 7 — Actor Creation state machine

BEGIN

ACTING

NEW_ACTOR

<<ACM 0.1>>

actor = new Actor();
UCT

REFRESH_ACTOR
delete actor;

actor->exhausted() || (change_mi())

Actor::Actor() : mi(prng96()), mn(1)
{ kc = new Actor_kc();
};

helloWhen = HelloTime;

IDLE

newInfo = TRUE;
txCount = 0;

TRANSMIT_INIT

UCT

newInfo = true;

TRANSMIT_PERIODIC
UCT

TRANSMIT_KSP
newInfo = !(transmit_complete = txpdu());

txCount +=1;

BEGIN

UCT

helloWhen == 0

newInfo && (txCount < TxHoldCount) && (helloWhen !=0)

<<TXM 0.1>>

Rev. 0.5 5/29/2006 5:38 PM 14

3.3. Transmitting KSPDUs
Each KSP instance transmits KSPDUs
independently of each of the others, subject to
its own transmission rate limiter. The transmit
machine, implemented by the Ksp object, is
specified in Figure 6. Each of the other
machines, if it detects a need to transmit new
information to other KSP participants, sets the
newInfo flag to prompt a transmission. In
addition the transmit machine ensures that
periodic transmissions take place.
If the number of participants is limited (to 86 or
less), information for the actor, live peers, and
potential peers is included in a single KSPDU.
Otherwise the actor’s own information is sent in
every PDU, but the live and potential peer lists
are filled by proceeding through the Ksp’s list of
peers, recommencing with the next KSPDU.

3.4. Choosing and changing MIs
Each KSP Instance uses a single Member
Identifier (MI) at a time. However the value may
need to be changed, first to handle the unlikely
event of a collision of choices by different
participants. Secondly the MI has a limited life,
since the MI.MN tuple must never be repeated28.
At the envisaged maximum transmission rate of
10 KSPDUs per second it is conceivable that the
MI would have to be changed once every ten
years. The 96 bit MI is chosen at random, i.e.
such that the distribution of MIs chosen by any
set of KSP participants using the same
implementation of MI choice is indistinguishable
from a random selection.
The MI29 effectively defines a multipoint
connection from the actor to each of its peers,
ordering the KSPDUs transmitted. This allows
each change of Key Contribution (KC) by the
actor to be communicated effectively. When the
MI is changed there will be a short period when
the actor’s peers will have a record of its
previous MI and KC, and until this times out a
new key value will not be agreed. Note that the
actor’s KC is within the scope of the Actor
object, which is recreated when the MI changes
so that the KC will be forced to change at the
same time. This avoids the possibility of a single
participant contributing the same KC twice, and
thus having it cancel out in the KI calculation.
Figure 7 specifies the actor creation state
machine implemented by the Ksp object.

28 At least the chance of repeat with the same CAK must be so
rare that no attacker will ever think of looking for one.
29 It might be thought that the MAC address based SCI could
serve as a sufficient unique identifier of a system, in combination
with the KC itself. However duplication of MAC addresses, both
accidental and deliberate, is far more common than it should be
and attempting to guess when this is occurring is much more
difficult if the protocol lacks the explicit MI. Trying to economize on
fields in PDUs is a bad choice. KSP spots duplicate SCIs reliably.

3.5. Key Generation
The actor object implements the key generation
machine (Figure 8). A new key (SAK) is
generated if the actor has active peers, there is
currently only one key (i.e. no old key), the key
generation machine has not been told to finish
(in deference to another KSP instance),the key
selected is not already in use and its PN space
is not exhausted. The existing
Actor_contribution is deleted and recreated if a
new key is wanted but its PN space is
exhausted.
The Key Generation machine does not delete
the keys it creates. The instance of the actor key
machine created with each key does this after
the key is no longer used for transmission or
reception.
3.6. Key installation and use
Each Actor_key is created by the Key
Generation machine as specified by the C++
code in Figure 9, and implements the actor key
machine of Figure 10 and previously described
in section 2.8.

Rev. 0.5 5/29/2006 5:38 PM 15

Figure 8 — Key Generation state machine

Actor_key::Actor_key(Ksp *p, KI key_id, KC key_contribution) : Participant(key_id), ksp(p),
kc(key_contribution),

 receiving = transmitting = finish = false; installed = 0; an = 0;
 next_PN = ksp->next_pn_for(key_contribution, key_id);

 for (int i = 0; i < ticks_to_record; i++) delay_bounds.push(next_PN);

 akm = PENDING_AGREEMENT;
 dbm = DELAY_BOUND;
};

Figure 9 — Actor key creation

BEGIN

WAITING

NEXT_KEY FRESH_KC
old_key = latest_key;

latest_key = new Actor_key(this, ki(), akc);

(active_partners()) &&
(old_key == 0) &&
(!finish) &&
(!key_in_use(ki())) &&
(!akc->ki_exhausted(ki()))

<<KKM 0.2>>

delete akc;
akc = new Actor_kc;

UCT UCT

(active_partners()) &&
(old_key == 0) &&
(!finish) &&
(akc->ki_exhausted(ki()))

Rev.0.5 5/29/06 5:38 PM 16

Figure 10 — Actor key machine

BEGIN

PENDING_AGREEMENT

ksp->all_active_agreed(ki) &&
secy->macsec_can_install()

NOT_USING_KEY

an = kay->use_next_an();
secy->macsec_install_key(this, ksp->key(), kspy->sci, an, next_PN);

START_RECEIVING
ksp->add_rxsas(installed, ki); receiving = true;

ksp->all_active_agreed_receiving(ki)

secy->macsec_transmit(installed); transmitting = true;

ksp->no_active_transmitting(ki) || finish
STOP_RECEIVING

receiving = false; an = 0;

if (this == ksp->latest_key) latest_key = old_key;
old_key = 0; delete this;

START_TRANSMITTING

INSTALL_KEY

 (installed = macsec_installed_key()) != 0

UCT

secy->macsec_transmit_key() != installed;

transmitting = false;
STOPPED_TRANSMITTING

(agreement _lost(ki))

UNINSTALL_KEY
next_PN = secy->macsec_uninstall_key(installed); installed = 0;
kay->rlse_an(an);

delay_bounds.empty()

KaY * const kay = ksp->kspy->kay;
SecY* const secy = kay->secy;

Actor key state machine <<AKM 0.3>>

(ki != ksp->ki())

Rev. 0.5 5/29/2006 5:38 PM 17

3.7. Kspy
This subsection, and others like it, will be
eventually provided to detail the variables and
procedures supported by each of the objects
that compose the operational model.

Rev.0.5 5/29/06 5:38 PM 18

4. Examples
This section provides some examples of KSP
operation, focusing on the essentials of key
agreement, installation, and use. Each message
is shown with its three component parts — actor
information, live peer list, and potential peer list
— separated by the | symbol thus:
Actor | Live list | Potential list
and each MI + MN tuple as X+1, X+2, etc.
where X is the MI value.

4.1. Two participants
Consider two stations SA, SB each with an
MI+MN of A+.., B+.., and key contributions of
KCA, KCB. The KSPDU exchange following
initialization of the stations proceeds as follows:
SA→A+1, KCA || →SB.. (1)
SB→B+1, KCB || A+1 →SA.. (2)
SA can now calculate SAKAB with key identifier
KIAB, since SB has proved itself live and SA
knows of no other potential participants.
Assuming that SA waits to turn its receiver on to
receive from SB before transmitting again:
SA→A+2, KCA,, LKIAB.r | B+1 | →SB.. (3)
SB can now receive and transmit using the
agreed key, and transmits:
SB→B+2, KCB, LKIAB.rt | A+2 | →SA.. (4)
so A can start receiving and transmitting.
Thus in the point-to-point case, in the absence
of an attack, KSP’s behavior is the same as that
of the well-known 4-way handshake.

4.2. Another participant joins
Continuing with the prior example, a station SC
is attached to the LAN or powered up.
Assuming, in order to be explicit about the
message exchanges, that SC is just in time to
receive the last message of the previous
sequence:
SB→B+2, KCB, LKIAB.rt | A+2 | →SA, SC.. (4)
then SC will record both SA and SB as potential
peers and transmit:
SC→C+1, KCC || A+2, B+2 →SA, SB.. (5)
this message will prove SC’s liveness to both SA
and SB who will independently move SAKAB to
being their old key, calculate a new key SAKABC
with KIABC, and transmit:
SA→A+3,KCA,LKIABC,OKIAB.rt|B+2,C+1| →SB,SC(6)
SB→B+3,KCB,LKIABC,OKIAB.rt|A+2,C+1| →SA,SC(7)
Neither of these two messages will cause SA or
SB to transmit again (until their periodic transmit
timers elapse of course) as they have no new
status to report, nor will SC transmit until it has
received both. Once SC receives the messages
it will have proof of SA and SB’s liveness and will
have calculated the same LKI as they have, so it
will install SAKABC, enable reception, and
transmit:

SC→C+2, KCC,LKIABC.r | A+3,B+3 | →SA,SB(8)
SA and SB will then install the key and enable
reception, and transmit:
SA→A+4, KCA,,LKIABC.r, OKIAB.rt | B+3,C+2 |→SB,SC(6)
SB→B+4, KCB,LKIABC.r, OKIAB.rt | A+4,C+2 |→SA,SC(7)
whereupon all the participants can transmit. A
little later their periodic transmissions will show
that they are receiving and transmitting using
LKIABC, but these at not required to establish the
new connectivity.
In general addition to a group requires each
participant to send two messages.30 More
messages can be transmitted if some or all of
the participants have a significant transmission
delay after processing.

4.3. Forcing a key change
The members of a CA transmit data
independently at their own rate, so it is not
known in advance which will come close to
exhausting the PN space for an SAK first. Any
KSP participant can force a key change by
changing its KC. Assuming two participants, that
having been contributing KCA, KCB for a while,
the last periodic messages transmitted prior to
the change will be:
SA→A+3, KCA, LKIAB.rt | B+5 | →SB.. (1)
SB→B+6, KCB, LKIAB.rt | A+3 | →SA.. (2)
(where the numbers ‘3’ and ‘6’ and their
successors are used as short hand for what will
be much larger numbers — the time between
forced key changes is at least 5 minutes for 10
Gb/s Ethernet and likely to be over a month for
100 Mb/s in typical use).
Assuming SA needs to change the key first, it
generates a new key contribution KCA2,
calculates LKIA2B, and transmits:
SA→A+4, KCA2, LKIA2B, OKIAB.rt | B+6 | →SB.. (3)
On receipt, SB calculates the same new SAK
and LKI, installs the new key, enables reception,
and transmits:
SB→B+7, KCB, LKIA2B.r, OKIAB.rt | A+4 | →SA.. (4)
On receipt of this message SA enables
reception, starts transmitting data, and
transmits:
SA→A+5, KCA2, LKIA2B.rt, OKIAB.rt | B+7 | →SB.. (3)
so SB can start transmitting data using the new
key, completing the change.
In general a key change requires each
participant to transmit a single message, plus
one message for the initiator of the change

30 My October presentation described key installation and
reception enabling criteria that require only a single message from
each participant. These have a slightly higher chance of flapping
connectivity for the new participants if many join at the same time
i.e. within a 100 milliseconds or so. Simulation may show which
strategy is to choose. In principle participants can make their
choice independently, as a combination is interoperable, but the
specification should make the definite choice.

Rev.0.5 5/29/06 5:38 PM 19

4.4. Message crossing
There is nothing particular about the choice of
SA and SB in the two participant startup example
above (4.1), so the message exchange
described is clearly independent of which station
transmits first. It is possible that they transmit at
the same time, or at least before either has
processed its receive message. It is a good idea
in KSP, and a number of protocols, to process
any received messages when scheduled before
transmitting, but the ‘message crossing’ can still
occur. KSP will still complete promptly, with the
worst case of message crossing proceeding as
follows:
SA→A+1, KCA || →SB.. (1)
SB→B+1, KCB || →SA.. (2)
SA→A+2, KCA || B+1 →SB.. (3)
SB→B+2, KCB || A+1 →SA.. (4)
SA→A+3, KCA,, LKIAB.r | B+2 | →SB.. (5)
SB→B+3, KCB, LKIAB.r | A+2 | →SA.. (6)
At this point both SA and SB can receive and
transmit using SAKAB, so instead of the required
4 messages a total of 6 have been sent. The
transmit state machine introduces a small
random (in the weak sense) delay whenever a
station has more than one active peer. This
reduces the expected number of messages sent
for large group CAs.

4.5. Multiple key changes
There is a small chance that two participants will
decide to revise their key contributions at the
same time, though a change by either would
result in a new key that would have solved the
other’s PN space problem. With two participants
that have just sent the messages:
SA→A+3, KCA, LKIAB.rt | B+5 | →SB.. (1)
SB→B+6, KCB, LKIAB.rt | A+3 | →SA.. (2)
and then both decide to change their key
contributions, the sequence of messages
proceeds as follows.
SA→A+4, KCA2, LKIA2B, OKIAB.rt | B+6 | →SB.. (3)
SB→B+7, KCB2, LKIAB2, OKIAB.rt | A+3 | →SA.. (4)
 (3) →SB.......
at which point both SA and SB will calculate a
new key with LKIA2B2 and transmit once more,
assuming SA happens to transmit first:
SA→A+5, KCA2, LKIA2B2, OKIAB.rt | B+7 | →SB.. (5)
now, from SB’s perspective, all active
participants have agreed on the same key so it
can be installed and reception enabled:
SB→B+8, KCB2, LKIA2B2.r, OKIAB.rt | A+5 | →SA.. (6)
and on receipt SA can do the same, and switch
transmission to the new key, transmitting:
SA→A+6, KCA2, LKIA2B2.rt, OKIAB.r | B+8 | →SB.. (7)
allowing SB to switch transmission to the new
key. Eventually reception using the old key will
stop, and it will be uninstalled.

4.6. Participant leaves
Say that SA, SB, and SC have agreed SAKABC
based on their key contributions KCA, KCB, KCC,
and have just transmitted messages:
SA→A+3, KCA,LKIABC.rt|B+3,C+3| →SB, SC(1)
SB→B+3, KCB,LKIABC.rt|A+3,C+3| →SB, SC(2)
SC→C+3, KCC,LKIABC.rt|A+3,B+3| →SB, SC(3)
(where ‘3’ stands for whatever MN SA, SB, SC,
have individually reached thus far for their MIs)
when SC is removed from the LAN. SA and SB
will carry on with the same key for a brief while,
until one or the other of them times out SC.
Assuming SA does so first, after two further
periodic transmissions. It will transmit:
SA→A+6, KCA, LKIAB,OKIABC.rt|B+5| →SB.. (4)
Though SB might send
SB→B+6, KCB, LKIABC.rt|A+6,C+3| →SA.. (5)
at its next transmission, but it will also eventually
time out SC, and will then send:
SB→B+7, KCB, LKIAB.r,OKIABC.rt|B+5| →SA.. (6)
since SA has already agreed LKIAB. On receipt
SA can install SAKAB, enable reception, start
transmitting data using the key, and transmit:
SA→A+7, KCA, LKIAB.rt,OKIABC.r|B+7| →SB.. (7)
which allows SB to start transmitting using the
new key.
The worst case of a new participant attempting
to join a CA is when a previous participant has
just left, since the existing participants will
attempt to include the departed station for a
while, but the newcomer cannot.

4.7. Agreement under replay attack
Consider the two participant startup example
above (4.1). Assume that an attacker has
eavesdropped on an earlier use of the LAN
between SA and SB, and acquired one or
messages from SA when it was using the
Member Identifier R with the present CAK — so
the message will pass the GMAC integrity
check. In some scenarios it may be very easy
for the attacker to insert his equipment in the link
between the two stations, fiber connections
through a common patch panel in a collocation
facility being one possible example. The
attacker might wait until SA transmits its first
message:
SA→A+1, KCA || →SB.. (1)
and then inject the replayed message, delivering
it just to SB.
 →R+3, KCR, LKIQR.rt|Q+7| →SB.. (1a)
Now SB receives and processes both messages,
recording both A and R (but not Q) as potential
peers and transmits:
SB→B+1, KCB || A+1, R+3 →SA.. (2)
this proves to SA that SB is live, or to be more
exact it proves to the participant identified by A
that a participant identified by B is live. SA does

Rev.0.5 5/29/06 5:38 PM 20

not record R as a potential peer, since it is not in
SB’s live list and transmits:
SA→A+2, KCA, LKIAB.r | B+1 | →SB.. (3)
having calculated SAKAB using the key
contributions of all active peers (i.e. itself and
SB). On receipt SB finds that its calculation of the
LKI agrees with that of all active peers, and
therefore installs the key, enabling both
reception and transmission, and transmits:
SB→B+2, KCB, LKIAB.rt | A+2 | R+3 →SA.. (4)
enabling SA to start transmission.
This particular replay attack failed to increase
the number of messages or time required for the
true participants to start communicating.

4.8. Another replay attack
The attacker of the previous example tries
again, this time sending the replayed message
(1a) to both SA and SB.
 →R+3, KCR, LKIQR.rt|Q+7| →SB.. (1a)
Assuming that SA processes this message
before SB sends, the message sequence
proceeds as follows.
SA→A+2, KCA || R+3 →SB.. (2)
SB→B+1, KCB || A+1, R+3 →SA.. (3)
SA→A+3, KCA, LKIAB | B+1 | R+3 →SB.. (4)
SB→B+2, KCB, LKIAB.r | A+3 | R+3 →SA.. (5)
SA→A+4, KCA, LKIAB.rt | B+1 | R+3 →SB.. (6)
After receipt of this last KSPDU SB can start
transmitting. The sequence of messages has
been extended by one because of the attack.
additional replayed messages do not slow
convergence on the key any more.

Rev.0.5 5/29/06 5:38 PM 21

5. Goals and requirements31
KSP and the assumptions made about its
placement within the overall key hierarchy for a
network, attempt the following32:
1. Maximize the chance that the required full,

i.e. symmetric and transitive, connectivity is
provided between stations on the LAN.

2. Provide secure connectivity within a few
seconds of the underlying LAN service
becoming available.

3. Function correctly in an environment where
stations are powered on and off at any time,
and where an attacker may control power.

4. Allow any subset of stations to be powered
off and on again without disrupting the
connectivity33 between the remainder of the
stations.

5. Support both point-to-point and multipoint
connectivity without preselection of one or
the other.

6. Ensure delay bounds for MACsec data
traffic.

7. Operate without requiring pairwise
communication between all stations.

8. Allow connectivity to be re-established after
power-up without requiring network
connectivity to an authentication server.

9. Protects against attacks that attempt to
exhaust resources by requiring difficult
cryptographic calculations.

10. Minimize the number of SAKs that each
station needs to support at any one time, in
practice limiting these to two.

11. Operate without the use of computationally
expensive public key cryptography
techniques.

12. Not disclose the data keys (SAKs)

5.1. Non-goals
1. Guard against or compensate for the use of

weak keys34.

31 Goals are those things that one would like to do and can do, the
other things are non-goals. Requirements (in standards
development) are things the other guy can’t do.
32 Amongst numerous other goals.
33 It is not even necessary to change SAKs if each station has a
real time clock of even modest accuracy.
34 Possession of even a single KSP message allows an attacker
to attempt an offline brute force attack. The KSP message is
integrity protected so the attacker knows with reasonable certainty
when the key has been guessed. Possession of a second KSP
message confirms the key to a high probability. For this reason
KSP is not used with easily guessable password based CAKs.

6. Target environment
KSP is designed to support fixed infrastructure
connectivity requirements for enterprises and
users of the P802.1ad Provider Bridge draft
standard. In particular both the MEF’s E-LINE
(point-to-point) and E-LAN (multipoint-to-
multipoint) services are supported. KSP is
designed to work well for cases of point to point
and small group connectivity, and the devices
connected are typically fixed and stable in
deployment. Over 90% of the CAs deployed are
expected to be point-to-point, with the average
group CA comprising 5 members, with very few
groups of more than 30 members.

Rev.0.5 5/29/06 5:38 PM 22

MACsec Summary
This section provides a brief overview of
MACsec.

6.1. What MACSec does
MACsec secures a LAN. In many cases this
means a physical point-to-point link. In others a
number of LAN equivalents may be realized by
multiplexing over a physically shared media. In
another a virtual LAN may be provided at many
customer sites by a provider bridged network. In
all these cases the service provided by MACsec
is that used by bridges and end stations.
Securing a LAN is different from securing
individual connections amongst stations
connected to that LAN35. All that MACsec
guarantees is that integrity and confidentiality
will be preserved amongst the set of stations
authorized to connect to the LAN.
An important goal of MACsec is not to change
the way that bridges and routers work, while
enabling them to apply policies36 to the data that
they forward. This means that MACsec itself
should not interfere with the normal connectivity
provided by a LAN to authorized stations.

6.2. Connectivity Associations
The authorized stations that are attached to a
common LAN compose a MACsec secure
connectivity association (CA), and prove their
mutual authentication by exchanging messages
that are integrity protected with a common
master key, the CA Key (CAK).
The CAK may configured in each station out-of-
band, using a local command line interface for
example. Alternatively the CAK may be the
direct or indirect result of executing a key
agreement, key exchange, or authentication and
authorization protocol. If the CA is point-to-point
(i.e. has only 2 members) , the CAK may be the
pair-wise master key (PMK) generated by EAP
with one of the members as the EAP peer and
the other as the authenticator. If the CA
comprises three or more systems with a full or
partial mesh of PMKs, a CAK can be assigned
and distributed to each of the members using a
trivial spanning tree protocol.
Since MACsec secures full (i.e. symmetric and
transitive) connectivity between the members of
a CA using symmetric key cryptography37, all the
members of the CA possess all the secure
association keys (SAKs) used to support the
CA. So the requirement for transitive
connectivity ends by implying transitive trust

35 If this is what is wanted from MACsec, then separately secured
LANs need to be provided and interconnected with a trusted
bridge or router.
36 The policies should be based on the authorization accorded to
the stations connected to each LAN
37 For the picky it also has to be noted that MACsec does not use
more than one key to integrity protect a frame, and that each
frame handed to MACsec by its user is only sent once.

within the CA – if A trusts B and B trusts C, then
A necessarily trusts C. This transitive trust is
captured by the single CAK. An attempt to
enforce partial connectivity to match a partial
mesh of master keys would cause client
protocols to behave oddly, if not incorrectly.
Equally the direct use of a mesh of keys opens
up the prospect of complex accidental failures.

6.3. Secure Channels
In order to provide unique cryptographic nonces
and replay protection, the data traffic from each
transmitter in an CA is identified as belonging to
a separate secure channel (SC). Each SC is
supported by a succession of secure
associations (SAs). One SA is replaced by
another with a different secure association key
(SAK) when the packet number (PN) space for
an SA is close to exhaustion, or when the CAK
is changed. SAKs may be unique to an SC, or
shared amongst some or all SCs in the CA. KSP
shares SAKs so that each participant in a CA
only has to be able to receive and transmit using
the same number of cryptographic keys as
required for a point-to-point CA.

6.4. Changing Keys
KSP allows both SAKs and CAKs to be changed
without disrupting the connectivity between
stations, although one reason for changing a
CAK is to create a new CA that excludes
members of a prior CA.
While addressing the requirements of multipoint
CAs, KSP is simple enough to be used
unchanged if the CA is only point-to-point. This
maximizes interoperability and helps
considerably in those cases where a CA is
initially believed to be point-to-point but turns out
to be multipoint. KSP has to work well in an
environment where stations are being powered
up and down and different systems take more or
less time to become functional after power up.

