Merging the “shim” and “relay”
Architectural Models

Stephen Haddock

January 11, 2006

Where we are:

= Two architectures have been proposed for 802.1ah

= “Shim” model: proposed by Paul Bottorff and is in the current
draft (p802.1ah/D1.52)

= “Relay” model: proposed by Steve Haddock in

http://www.ieee802.org/1/files/public/docs2005/ah-haddock-
architectural-model-1105.pdf

= The models have several similarities ...

= Both are dual relay models with new functions on the port stack
of the ports that interconnect the relays.

= Both models have identical data forwarding behavior when
both relays are in the same piece of equipment.

= .. and one fundamental difference

= Where the relationship between customer addresses and
backbone addresses is learned and maintained.

Slide 2
Jan. 2006

Simplified view of the debate

= Steve's objection to the “shim” model:
= Having to create a address learning/resolution function in a
shim layer of the B-component
= Paul’'s objection to the “relay” model:

= Does not provide an |-tagged interface to allow:

Separation of B-component and I-component into different devices at
the backbone edge

Interconnection of B-components at a backbone NNI

= So we need to find a model that:

= uses the I-component relay for the customer-to-backbone
address learning/resolution, and

= provides an I-tagged interface

Slide 3
Jan. 2006

Moving to a merged model

= To get to the merged model from the “shim™ model:

= Take the customer-to-address learning/resolution function from
the B-component side of the |I-B connection and integrate it into
the I-component relay and I-shim as proposed in the “relay”
model.

= To get to the merged model from the “relay” model:

= First, use the terminology established for the shim model in the
current draft.

= Second, discard both of the two options proposed for
interconnecting the I-component and B-component in favor of a
third option that creates a single logical connection without a B-
tag. This creates an I-tagged interface.

Slide 4
Jan. 2006

Where the relay model went wrong

Option 1: Virtual Port per ISID Option 2: Virtual Port per BSVID

Toward Backbone: Groups VPs into Backbone VLANs

From Backbone: Demuxes frames based on ISID
(and validates 1SID) Each VP has a PSVID to ISID mapping table

/ (and validates ISID in frames from Backbone)

Each VP has a unique ISID
M- - Backbone S-VLAN| Provider S-VLAN
Backbone S-VLAN| i} Provider S-VLAN "
I Component " Component
Component H Component "
o Provid
Backbone L Provider Backbone o |t ~TOVICEY
— —_— Network v Network
Network . Network L
\ \One per ISID \
One per B-VLAN One per B-VLAN

\ Switches frames based on B-DA and Backbone Switches frames based on B-DA and Backbone
Service VLAN Identifier (BSVID) Service VLAN Identifier (BSVID)

g v;m Slide 19 i -ﬁv{m Slei2y
e : o : Jan. 2006

. Both options present a logical connection per B-VLAN to the B-
component. Although this an easy way to get the B-VID assigned
(leverages normal bridge component functionality), it doesn’t make
sense to have B-VIDs at this point in the network:

= If split the B-component and |I-component into backbone provider

equipment and backbone customer equipment with a demarcation
point between, don’t need or want B-VIDs on this link.

= If connect a B-component to a B-component at an NNI, don’t need or

» want B-VIDs on this link. Slide 5
Jan. 2006

Option 3: Virtual Port per ISID

Toward Backbone: Muxes frames to single link
From Backbone: Demuxes frames based on ISID

I-tagged Interface _ __One per ISID
7 ~ Each VP has a unique ISID
\
Backbone r ' ', «| ~Provider
~S=VLEAN- 1\ SVEAN
B- Component ¥ > | 1 I-Component
l \ ,) ! :
Backbone O N | Provider
Network I C | Network
\ I » I
\ / \ : .: 1
= \ E /
WY 7
\ ‘\I, /
/‘ B-Shim ~_ _~ \
I-Shim
Switches frames based on B-DA and Switches frames based on C-DA
Backbone VLAN Identifier (B-VID) and Provider VLAN Identifier (S-VID)

Slide 6
Jan. 2006

I-tagged service interface examples

— —— >
PBBN
B-comp B-comp B-comp B-comp
I-tagged
Service ool
Interface
B-comp I-Shim
“customer” I-comp B-comp Multi-
equipment I I Protocol
thingy
comp |comp
PBBN
PBN PBN
Multiple ,
S-VID Peer NNI Multiprotocol
spaces (?)

Slide 7
Jan. 2006

Impact of Merged Model on I-tagged I/F

= Advantages:

= No new data base to learn and store C-MAC + I-SID to B-MAC
relationships

= Nothing on PBBN side of I-tagged interface knows or cares
about customer addresses
No customer addresses learned at Peer NNI

= Whether multiprotocol interface (if we decide it is within .1ah scope)
deals with customer addresses at all is determined by the
multiprotocol customer equipment.

= Nothing on PBBN side of I-tagged interface participates in
customer spanning tree protocols

= S-tagged interface naturally supports bundling

= Disadvantages :

= B-MAC addresses cross |-tagged interface

If a backbone provider wants to conceal it's addresses, need a MAC
address translation capability in B-shim.

Slide 8
Jan. 2006

B-shim functions to support I-tagged I/F
= [|-SID filter

: Prevent sending/receiving frames across the |-tagged interface for I-
SIDs that do not belong to that customer (analogous to S-VID filtering
in 802.1ad S-tagged interface).

= [|-SID translation

: Allow I-SIDs to be locally significant at the interface (same reasons for
having S-VID translation in 802.1ad).

= Mapping service instances to backbone tunnels
8 I-S1D to B-VID mapping
: |-SID to multicast B-DA mapping

If broadcast B-DA then translate to multicast so create mcast tunnels

Alternatively configure I-shim in customer equipment to use the
multicast B-DA instead of broadcast but then B-shim may need to
verify that the I-SID and mcast B-DA are a legal combination

= B-DA translation

Translate unicast B-DA if backbone provider wants to conceal true

addresses

Slide 9
Jan. 2006

	Merging the “shim” and “relay” Architectural Models
	Where we are:
	Simplified view of the debate
	Moving to a merged model
	Where the relay model went wrong
	Option 3: Virtual Port per ISID
	I-tagged service interface examples
	Impact of Merged Model on I-tagged I/F
	B-shim functions to support I-tagged I/F

