BCN Stability and Fairness

Yi Lu, Rong Pan, Balaji Prabhakar, Davide Bergamasco, Andrea Baldini, Valentina Alaria

Stanford University and Cisco Systems

Outline

- 1. Stability analysis
 - Explicit parameterization of stability region
 - Sufficient condition for overall stability
- 2. Self-increase
 - Stability
 - Fairness (?)
 - Flow completion time

BCN Signals

Fluid-Model Equations

- The CP equations (not linearized) $\frac{dq(t)}{dt} = N \times R(t) - C.$
- The RP equations

$$F_b(t) = -\left[(q(t) - q_{eq}) + \frac{wS}{CP} \times \frac{dq(t)}{dt} \right] / S.$$

If $F_b(t - \tau) > 0$,
 $\frac{dR(t)}{dt} = [G_i R_u \times F_b(t - \tau) \times R(t - \tau) \times P] / S.$
If $F_b(t - \tau) < 0$,
 $\frac{dR(t)}{dt} = [G_d \times R(t) \times F_b(t - \tau) \times R(t - \tau) \times P] / S.$

Fluid-Model Equations

- Continuous time
- No stochastic processes
- No discrete packet sizes
- Assume infinite buffer size
- Control analysis stability
 - Help us set parameters
 - Prerequisite for stochastic stability

The linearized system is stable if

 $\begin{array}{ll} \text{(i)} & G_i R_u w \leq \frac{S}{a\tau} & \text{(ii)} & G_i R_u w^2 > \frac{PC}{b\sqrt{b^2 + 1}} \\ \text{(iii)} & G_d w \leq \frac{SN}{aC\tau} & \text{(iv)} & G_d w^2 > \frac{PN}{b\sqrt{b^2 + 1}} \end{array} \end{array}$

where a \geq 1 and b/a + arctan(b) = π / 2

a bigger \rightarrow slower response

 \rightarrow b bigger \rightarrow N can be bigger

Sufficient condition

(i) and (ii) corresponds to the source equation Fb>0

(iii) and (iv) corresponds to the source equation Fb<0

We show that these conditions are <u>sufficient</u> for the stability of the switching system.

Scenario

- Every 0.2 s, 50 new long-lived flows inserted
- Starting rate: 100 Mbps
- q_{eq} = 16
- Buffer size = 100 x 1500 Bytes
- P= 0.01
- $G_i = 4$, $Ru = 1e^6$, w = 2, $G_d = 1/128$ obtained with a = 5 and b = 2.2

Stability

Self-increase: RP may gently increase its sending rate in various ways (see below), even when there are no BCN signals from its CP.

This is a good idea for several reasons:

- It is fail-safe (messages may be lost)
- Gently probe for extra bandwidth
- V.useful for fairness, as we shall see

Let's consider 3 types of self-increase

- 1. At a fixed rate of A bps
- 2. At a rate AxR bps, where R is the current sending rate
- 3. At a rate A/(# of negative feedback signals)
- Type 2 brings a bounded amount of extra work, *regardless*

of the number of sources

Type 3 similar to type 1, but fairer

Type 1: Gentle increase of 10 Mbps/s

Fairness

• Self-increase helps improve fairness properties

Fairness (unfairness index)

Fairness → Flow Competion Time

- Plots of fairness properties for infinitely long-lived flows are not very informative.
- We realize that fairness has its implications in scenarios with flows arriving and departing
- Fairness can be translated into: For flows within a size range, the completion times are similar
- Lack of fairness is hence reflected by the large variance in completion times
- Simulations shows that self-increase helps reduce the variance in completion time, and does not hurt the average

Scenario

- Flow size distribution ~ Pareto 1.8
- Mean flow size 1 MB
- Arrival rate Poisson 1125 flow/sec
- 9 Gbps average traffic
- Starting rate 1Gbps

Average completion time

Normalized standard deviation

