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Outline

Next phase: BCN validation
> larger datacenter networks
» demanding traffic patterns

» ZRL congestion benchmarking
» congestion faxonomy and a practical toolbox

*  Analytical dual ranking: The APS method
» BCN's algorithmical sensitivity to parameters
» Parameters' sensitivity to benchmarking traffic

Simulation results
> validation of analytical selection
> parameters’ sweep: stability plane

Conclusion
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Next phase of BCN validation

Baseline BCN: validated by multiple parties

> joint effort of the .1au adhoc simulation teams
Basic scheme is functional

» for detail conclusions see .lau repository

Next: BEN w/ /arger networks under stress traffic

How to proceed?
» Empirical approach: Brute force simulations (see next foil)

» More rigorous approach: ZRL congestion benchmarking

o Iterate between analytical and simulation models to systematically parse
the combinatorial tree and reduce the dimension of the parameter space
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Empirical approach: Brute force simulations

Multi-dimensional problem
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BCN with baseline settings: unstable.
Which dimension to explore 15t?



A More Rigorous Alternative

Dimensions 1-3 (architectural) are determined by
» market of datacenter and HPC
» 802 architectural definitions (e.qg., ideal OQ)

Dim's 4,5 (scheme settings) => Our main target.

Dim's 6-8 (methodology) => Toolbox

I

Toolbox proposal: "ZRL Congestion Benchmarking'
1. Benchmarks designed for datacenter environments
2. Combines analysis w/ simulation in a systematical method
3. Tried and improved thru work in related standards.
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Baseline Topology Proposal: Bidir Fat Trees (FT)
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Simulate: 8 - 32 nodes - Simulate: 128 - 2K nodes
- Time per run: < lhr - Time per run: TBD

Fat-trees: Scalable, w/ excellent routing and performance properties.
Optimum performance/cost with current trends in technology. Can
emulate any k-ary n-fly and n-cube topology. Large body of knowledge.
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Toolbox-1. Traffic: ZRL Congestion Benchmark

Source nodes generate™ one or more hotspots according to matrix [)\ij hotd* tp>q =
O hot [Ny notltp>q » Ay nod i Specified™™ per case as below

1. Congestion type: IN- or OUT- put generated

2. Hotspot severity: HSV = A, .. / Bys . Ay = 2 A atf hotspotted output,

Uy s = Service rate of the HS

> Mild 1<HSV<«=2
> Moderate 2<HSV«<«=10
> Severe HSV > 10.

3. Hotspot degree: HSD is the fan-in of congestive tree at the measured

hotspot

>  Small HSD < 10% (of all sources inject hot traffic)
>  Medium HSD ~ 20..60%

> Large HSD > 90%.

* Traffic generation is a Markov-modulated process of burstiness B (indep. dimension)
**Metrics and measurement methodology are subject of another deck

IBM Zurich Research Lab GmbH



Toolbox-2: BCN Parameters. How to proceed?

BCN entails 6 params

1. Equilibrium threshold Q,,

2. Rate unit R,

3. Sampling rate P,

4. Feedback weight W

5. Increase (additive) gain G,

6. Decrease (multiplicative) gain G,

Next step?

a) The empirical approach is unsustainable because it generates too many
singular points, as seen on foil #4

b) A purely analytical approach is difficult owing to non-linearity of model.
Would also require validation by simulation.

c) However, a combined analytical and simulation method is feasiblel
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Reduction of Simulation Space: Dual Ranking

Using ZRL Benchmarking, the smallest simulation space is given by
the tuple product

> SimRuns = {topology, HS type, HS severity, HS degree, burstiness} x
{BCN param} = 2*2*3*3*4 x {BCN param} = 144 x {6D}

SimRuns = 144 x {Q,, R, P, W, G; G} ... still a VERY large spacel!

Further reduction by (simplified) dual ranking analysis
1. algorithmical sensitivity fo BCN params: which param matter most?
2. parametrical sensitivity to traffic: which benchmarks are critical?

Next: Algorithmic and parametrical (AP) sensitivity of BCN

Sensitivity is of fen a more accurate metric of stability margin than either
gain or phase margin! However, here we didn't use canonical sensitivity.
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Ranking by AP Sensitivity - 1

From BCN stability model

1. Conservation: dg/dt = HSD*\(t) — pyg =>
2. q(s)=HSD* A(s)/s

3. Feedback: Fb(t) =-(q(t) — Q.,) + w*(dqg/dt) / (1ys™ py) =>
4. Fb(s)= G * [1 +w*s/ (s* p,)]

AL dA(t)/dt = G*NM(t)* p,*Fb(t-1)
. OAI(t)/d0Fb(t-1) = G;*p,*uy/HSD =>
7. AP sensitivity of G;= 0AI(t)/dFb(t-t) * HSD/(p,*Hys)

™ »

8. MD: d\(t)/dt = G*Mt)*Mt-t)* p,*¥Fb(t-1)
9. OMD(t)/dFb(t-1) = G *p *(1y/HSD)? =>
10. AP sensitivity of Gg= dMD(t)/dFb(t-t) * (1y;/HSD)?2 / p,.

q(t) =queue occupancy; HSD=no. of hot flows, each with rate A(t), at hotspot served w/ rate piyq
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Ranking by AP Sensitivity - 2

(7,10) =>
a) p, directly impacts G, and G,
» 1%t order sensitivity on p

b) G, and G, depend on the HSD/p ratio
» congestion w/ high HSD and low ;4 stresses stability

(10) =>
¢) G4 1s more sensitive than G, to the HSD/pq ratio (squared)
(4,7,10) =>

if denominator ~ f (p *,;4), where p .« 1 and p,<1, -> the hotspot drain rate further
increases the sensitivity to p

d) everyting else being equal, output-generated (OG) congestion is more stressful for
BCN’s stability than IG

What to begin with?
» BCN params: p, and G
» Traffic: Output-generated congestion w/ high HSD and low g .
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Qualitative Validation: Input- vs. Output-Generated HS
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Simulations Confirm Our Sensitivity Ranking

* OG requires higher control effort than IG
> Slower throughput recovery; overshoot
» Higher queue size fluctuations
> Less stability margin: more sensitive to parameter settings

- BCN's impulse response improves as P, and G, increase
(within bounds!)

> Applies to both scenarios => as P, and G, increase, so does the
system's distance between pole(s) and origin... up to a point

* Next: Simulation-based sensitivity analysis of P, and G,
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Simulation Overview

Single-stage network, 32 nodes

Shared-memory switch

Background traffic is uniformly distributed

All frames minimum size (64 B, time slot = 51.2 ns)
No TCP/IP, raw Ethernet!

Parameters

> Mean load 7

> Mean burst size B

» Shared-memory size M

» Round-trip time RTT (in slots)

> BCN parameters (P, 64, 6, Q... W, R)
Metrics

» Throughput (aggregate and per port/flow)

> Latency (measured per burst)

> Queue length (congested queue)

» Fairness (RJFI, ALFI)

» Number of PAUSE and BCN frames sent
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Switch and

Shared-memory output-
queued switch

PAUSE enabled

» Global high- and low-
watermark memory threshold
trigger pause and unpause

> High watermark T, = M -
N*(RTT*B +L,,,)

> Low watermark T,=T, /2

» PAUSE renewed before expiry
(take into account RTT)

Adapter Model

VOQ-ed per end node
Round-robin service discipline

Number of rate limiters
unlimited

Egress buffer flow-controlled
using PAUSE (high/low
watermarks)

Lossless operation:
No frame drops due to buffer overflows!
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Traffic Scenarios

Output-generated hotspot

> Service rate of output O is reduced to 20% of full line rate

> Results in an A-degree hotspot

> Without CM, aggregate throughput is limited to 20% due to hogging

Initial Param Settings
1. Qg <=M/ N (memory is partitioned to reduce hogging)
2. R, =R, /1000

3. P,=[0.01,0.1]

4. W=1

5. 6,=1

6.
N

G4 = [0.0005, 0.05]
ote: Above settings may be neither optimal nor a baseline match.
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Results: O6 hotspot (N=8)

00.75-0.8 00.75-0.8
m0.7-0.75 m0.7-0.75
00.65-0.7 00.65-0.7
m0.6-0.65 m 0.6-0.65
00.55-0.6 00.55-0.6
00.5-0.55 00.5-0.55
m0.45-0.5 m0.45-05
00.4-0.45 00.4-0.45

RTT=0, M=256*N,Q.;=M/N
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a07078 *  Hotspot rate = 20%
m0006s * TPmax = 4 *(N-1)/N + 0.2/N
D055 + 2=85%,N=8 => Tp, .= 0.77

m0.45-05

204045 + Varying G4 and P,
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Results: O6 hotspot (N=32)

N=32,B=1

N=32,B=10
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Results with M/(2N) Memory Partitioning: O6 hotspot 1L32N

network =1L32N, B =1

network = 1L32N, B =10

RTT=0, M=256*N, Q.,=M/(2N) |
Throughput measured during hotspot
Hotspot rate = 20% => severity =

w0503 85%/20% = 425%

§Z§: TPmax = 4 *(N-1)/N + 0.2/N

a0sos /=85%, N=32 => Tp,, = 0.83

Varying 64 and P,
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IG results

» Input-generated severe hotspot
» Uniform background traffic load = 85%

> Multiple (HSD) inputs send 100% of their traffic to output O
o Primary HSD = 8 (all the other also send a smaller quota)
o Hotspot is targeted by 8 hot flows and 24 background flows
o Aggregate severity = (8*100% + 24*85%/32) = 863%

» Without BCN, aggregate throughput is limited to about 100% /
(HSD((N-1)/N)+1)
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Queue length [x 64 B]

Upper mem. thr.

Results: Input-gen'd hotspot (1)

32 nodes, Bernoulli traffic, input-generated hotspot [degree = 8)
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Throughput
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Results: Input-gen'd hotspot (2)
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Results with M/(2N) Memory Partitioning: IG hotspot 1L32N

network = 1L32N, B =1

network = 1L32N, B =10
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Conclusions

Analytical and simulation modeling show that BCN's stability and
performance depend on

> Two 15" order params: p, and G,
> Type of traffic: Output-generated congestion is a stress test

Optimal ranges for OG (assuming fixed W*, G;, R, Q,,)
> P, =[0.02, 0.05]
> G6,4=[0.002, 0.005]

Burstiness also determines sensitivity
> Large bursts (MTU-Jumbo) increase the sensitivity

Upcoming
> Increase network size to 128, with 2 and 3 levels.

* In simulations W proved less sensitive than we've analytically expected
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