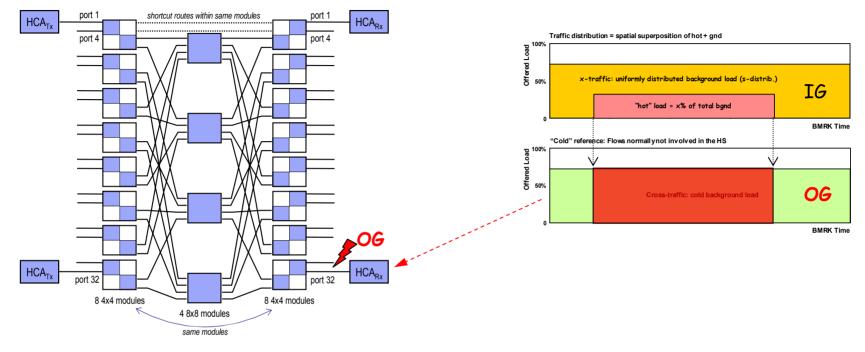

Zurich Hotspot Benchmark Output Generated Case

M. Gusat and C. Minkenberg Nov. 2006

1


A Simpler Fabric (Baseline/Gupta) w/ Bidir Traffic

- 1. edge nodes are bidir
 - dual function: each client and server will simultaneously source <u>and</u> sink traffic
 - 2. hence 10 sources and 10 sinks
- 2. 3-hop network

- Always: constant load (50-80)% uniform spatial distribution
- Hotspot period: from t_i to t_f , the sink at Server_C1 slows down its RX rate from 100% to 20% (as in ZRL's tree-based study)
 - > Obs. PAUSE must be enabled to trigger a saturation tree!

Input vs. Output-generated Hotspot w/ PAUSE

Moderate OG:

- 1. Network initially loaded w/ uniform background traffic at 70%.
- 2. During a defined congestion period, DST=32 (or 0) reduces its RX rate to 20%.
- > Obs. PAUSE must be enabled to trigger a saturation tree!

Effect: the "cold" bgnd load traffic becomes hotspot "culprit", with hotspot degree HSD=N-1 and severity HSV= Bgnd_load / RX_rate

Moderate OG from Zurich Hotspot Benchmark (ZHB)

- Source nodes generate* one or more hotspots according to matrix $[\mathbf{\lambda}_{ij_hot}]$: $t_{p>q} = \alpha_{k_hot} [\mathbf{\lambda}_{ij_hot}]$: $t_{p>q}$, $[\mathbf{\lambda}_{ij_hot}]$ is specified** per case as below
- 1. Congestion type: IN- or OUT- put generated
- 2. Hotspot severity: HSV = $\Lambda_{aggr} / \mu_{HS}$, $\Lambda_{aggr} = \sum \Lambda_i$ at hotspotted output, μ_{HS} = service rate of the HS
 - Mild 1 < HSV <= 2</p>

•

- Moderate 2 < HSV <= 10</p>
- Severe HSV >> 10.
- 3. Hotspot **degree**: HSD is the fan-in of congestive tree at the measured hotspot
 - Small HSD < 10% (of all sources inject hot traffic)</p>
 - ➤ Medium HSD ~ 20..60%
 - ➤ Large HSD > 90%.

* Traffic generation is a Markov-modulated process of burstiness B (indep. dimension) **Metrics and measurement methodology are subject of another deck