Quantifying stream distortion in 7hop Fast Ethernet network

Max Azarov

v1.03

Consider 5 port switch with regulator before priority output queue

Output port receives measured steam and 3 interfering streams @ 18.75% each = 75% max load

Method of analysis

- To do quantitative analysis, we use graphical method with envelope charts
 - Network is running STP
 - Measured stream traverses full diameter of the network (7 hops)
 - For output port there's 4 input streams, ¼ of total allowable bandwidth each (75%/4=18.75%), among them is a measured stream
 - Each input stream initially has a leaky-bucket envelope. We take this as a distortion level 0
 - We evaluate envelope of the measured stream on the output.
 Output has a distortion level +1
 - In our model, combined input traffic experiences maximum queuing delay, at which point interfering streams cease and only measured stream continues
 - This inflicts maximum level of distortion on the measured stream (needs a prove)
 - Same repeated on the next switch with interfering streams with a new increased distortion level until whole network is traversed
- Gives quantitative estimate of a queuing delay
- Yet to provide a worst-case proof

Distortion level distribution in a 3-hop network

- For streams traversing whole network diameter end-to-end
 - Maximum distortion level of interfering streams raises as measured stream approaches STP root switch
 - Starts to fall as measured stream progresses away from the root towards the edge

We are on 7-hop network with STP

Switch 1 - input dist-n: 0/0 (measured/interfering)

Size of data

Switch 2 - input dist-n: 1/1 (measured/interfering)

Time

Size of data

Switch 3 - input dist-n: 2/2 (measured/interfering)

Time

Size of data

Switch 4 (root) – dist-n: 3/3 (measured/interfering)

Size of data

Time

Switch 5 - input dist-n: 4/2 (measured/interfering)

Size of data

Switch 6 - input dist-n: 5/1 (measured/interfering)

Switch 7 - input dist-n: 6/0 (measured/interfering)

Time

Size of data

End-to-end delays

	4-port	5-port
End-end delay (ms)	2.68	2.791667

Delay vs maximum number of ports

Latency is growing at least as power of 2

Extrapolated end-to-end latency for 48 ports

Extrapolated (spline) end-to-end latency for up to 48 ports

Suggests almost 90 ms latency

9/13/2006

To-do

- Case with regulators on the input, located before switching fabric
 - Should reduce distortion somewhat, but will add delay on the regulator
- Formal proof for worst-case (perhaps the described case is not the worst)
 - i.e. need to provide definitive negative answer for:
 - Can other interfering stream bandwidth allocations cause bigger delay?
 - Perhaps equal distribution is not the most disadvantageous after all
 - Can measured stream traversing shorter path on the network experience bigger delay?
 - On one of the hops, such stream may experience interference from uplink with higher maximum distortion level, but on the other hand, it will pass through less hops overall

References

- Traffic envelopes and regulators
 - Rene L. Cruz, "A Calculus for Network Delay, Part I: Network Elements in Isolation", IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37. NO. I, JANUARY 1991
 - Leonidas Georgiadis, Vinod Perk, "Efficient Network QoS Provisioning Based on per Node Traffic Shaping", IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

Questions?