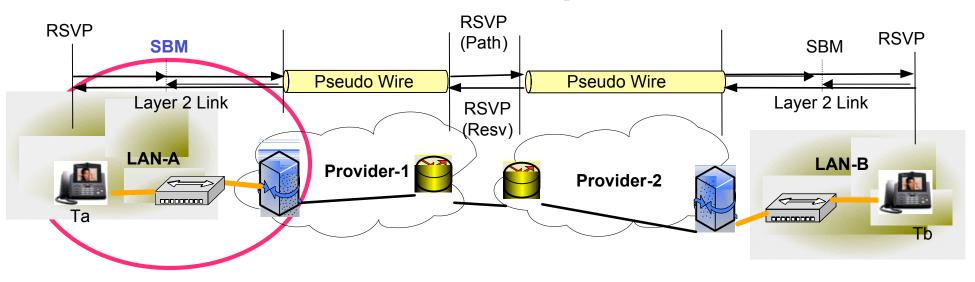
Centralized Admission Control Mechanism for SRP

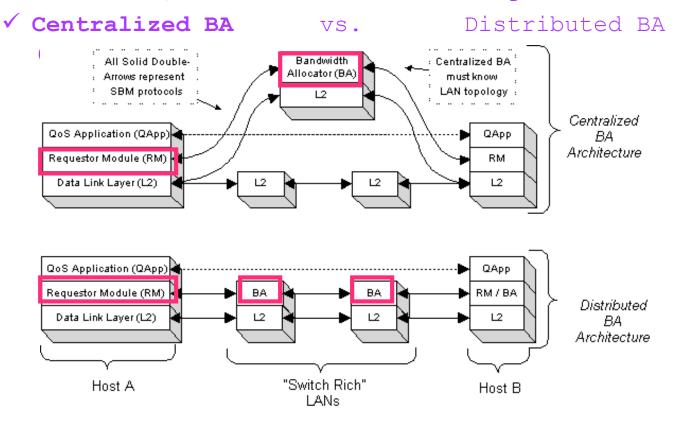

2006.7.

Jinseek Choi

jinseek@hanyang.ac.kr

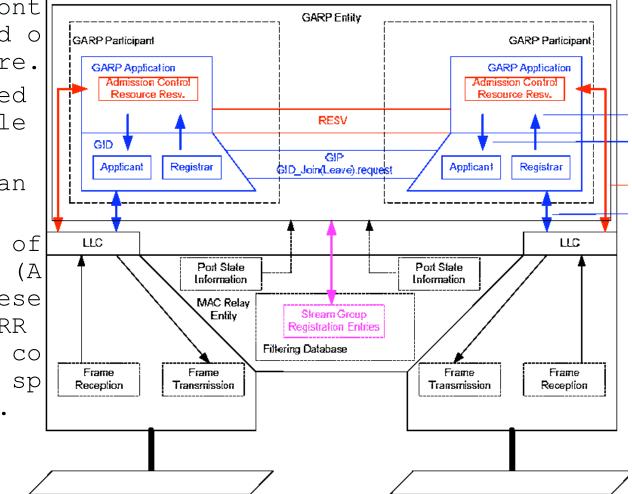
Background -RSVP

- RSVP is a network control protocol that enables resour ce reservation and admission control working on layer 3, sits on the top of LAN.
- LANs would be treat as a transparent point-to-point li nk between two RSVP peers.
- So, the Subnet Bandwidth Manager(SBM) is a solution to handle QOS requirements over local area network. SBM i s an RSVP-based protocol, which handles admission cont rol and bandwidth reservation operations.



Background -SBM

- SBM is a signaling protocol for RSVP-based admission c ontrol over IEEE 802 LAN that allows communication and coordination between network nodes and switches and en ables mapping to higher-layer QOS.
- The SBM should translate into link layer specification and convey RSVP messages between two RSVP peers
 - > The logical components of the SBM are
 - ➢ Bandwidth allocator (BA)
 - ➢ Requestor Module (RM)
 - The SBM protocol provides an RM-to-BA or BA-to-BA sign aling mechanism.
 - > The SBM protocol is QOS protocol (such as RSVP) independent.
 - > It provides an API interface rather than the protocol


SBM: Centralized vs Distributed Admission control

- Admission Control
 - The BW allocator (BA) processes RSVP PATH or RESV (establish PATH state in the switch, store the layer2/ 3 address, forward the PATH message to next hop)

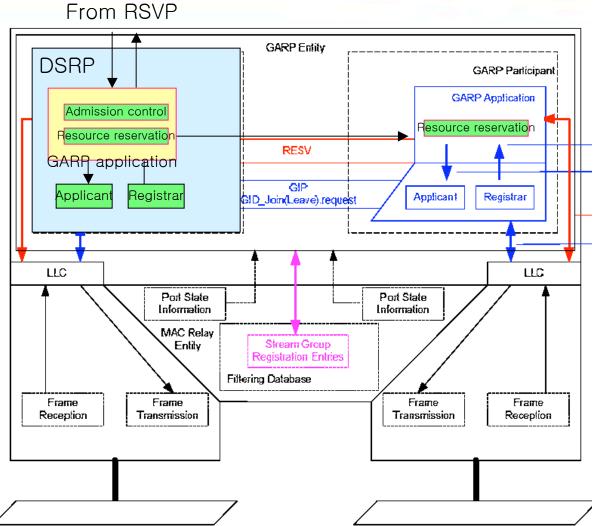
Background-SRP

- SRP is an applicatio n of Link layer cont rol protocol based o n GARP architecture.
- It is a distributed protocol compatible with IEEE 802.1.
- SRP is simpler than SBM.
- SRP has functions of admission control (A C) and resource rese rvation control (RR C), but admission co ntrol does not be sp ecified in detail.

Requirement: SRP interaction

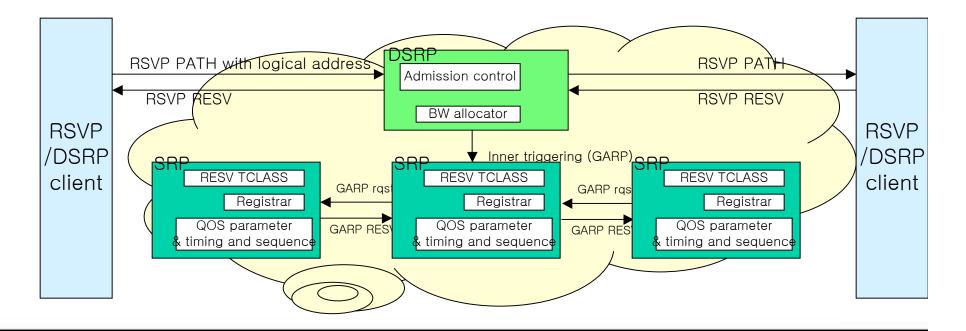
- SRP is a link layer admission and resource control protocol. It does not c are about the layer 3 reservation protocol.
- It is a stand alone admission and resource reservation protocol.
- However, SRP needs to communicate with other network layer QOS prot ocols(RSVP and SIP signaling protocol) with respect to admission contro 1 and resource reservation.

Shortcoming of Distributed Admission Control


- Distributed admission controller has an advant age of the scalability, but it requires that a ll bridges and switches support admission cont rol mechanism to compute topology as well as i nventory.
- Each host and switch can manage the resource a vailability of each link.
- Every host and switch interact with existing r esource management controls (such as SBM, RSV P, SIP based signaling protocol and so on).
- Comparing to centralized mechanism, distribute d mechanism has the advantage of scalability b ut the distributed admission control algorithm has a problem of being not easier to deploy.

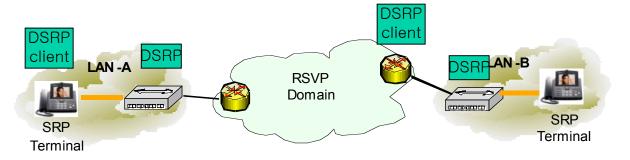
Why we need Centralized Admission Control in SRP

- Comparing to distributed admission controller, centralized admission controller has the advan tage of being easier to deploy.
- Since LAN has the limits on the geographical s ize of the network, but the scalability is not a problem in AV networks.
- Centralized admission controller is easy to in teract with existing resource management contr ol protocols (such as SBM, RSVP, SIP and so o n).
- SRP already has the knowledge of the layer 2 t opology, e.g., link layer spanning tree inform ation.
- Therefore, centralized admission controller wo uld have to reserve resources on all segments for all flows which would lead to very efficie nt utilization of resources.


Proposal: Centralized Admission Control Mechanism

- Designated SRP (DSR P) is designed as a centralized admissio n controller (a laye r 2 admission contro ller) similar to Des ignated SBM (DSBM).
- The DSRP may actuall y be co-located with a switch/bridge or h ost/router.
- Other Switch/Bridge do not take part in the admission contro l and resource manag ement processes.

Proposal: Designated SRP interaction


- DSRP can processes other QOS signaling functions suc h as SIP and RSVP PATH (establish PATH state in the swi tch, store the layer2/3 address, forward the PATH message to next hop)
- DSRP architecture is simpler than SRP architecture s ince Ingress host and egress router need not provide functions of SRP admission and reservation control.


Functions of DSRP

- DSRP is responsible for the centralized admiss ion decisions for the entire subnet.
- Intermediate bridges and switches need not hav e any function of the bandwidth management (B A) since they will not be actively participati ng in admission control.
- The end station requesting a reservation initi ates communication with its DSRP.
- DSRP must have the knowledge of the layer 2 to pology, e.g., link layer spanning tree informa tion.
- Therefore, DSRP would have to reserve resource s on all segments for all flows which would le ad to very inefficient utilization of resource s.

Two Interconnection Models

1. Two SRP segments are interconnected via RSVP domain

2. Two RSVP terminals are interconnected via SRP domain

Requirements for DSRP

- DSRP admission control procedure handles traffic classes sim ilar to DSBM, semantics of parameter, timing, type codes n eed to be congruent to the network layer traffic classes (RSVP, SIP)
- e.g) Message Mapping :

RSVP-Path, Path-Tear \rightarrow ? , ? RSVP-Resv, Resv-Tear \rightarrow DSRP Resv, DSRP Tear RSVP-Error \rightarrow DSRP Error (?)

QoS Parameters mapping: Token Bucket Size, Token Rate, Peak Rate, ..

% If it is different, edges may not perform admission control to backbone properly.

<u>**Timing & Sequence mapping</u>** : Path State Refreshment, Soft-st ate Cleanup, Error Recovery, etc..</u>

Type Codes mapping : Error Codes, Policy Codes, Cryptograph ic Key..

Other Requirements

- DSRP should give sufficient information for re source control in IEEE 802 network.
- DSRP should minimize overhead for conversion b etween SRP←→RSVP/SIP
- DSRP should be able to carry Terminal type, Po licy Data, User Authentication Info. for admis sion control, security check, charging, etc. ... in provider network.
- DSRP need to have strong protection from DoS a ttack, refresh storm, and other user initiated security threats.

References

- A protocol for RSVP-based Admission control over IEEE 802-style networks, RFC 2814.
- QOS with TCP/IP and shared media LANs, H. Kokkinen, Nokia Research Center, http://www.netlab.tkk.fi/opetus/s3 8130/k99/presentations/5.pdf
- GARP Stream Reservation Protocol, avb-feng-GSRP-v0p 4-060328.pdf, IEEE Initial Draft v0.4, 2006.02.28, Felix F eng, feng.fei@samsung.com