Simulation Modeling of BCN V2.0 Phase 1: Model Validation

J. Jiang and Raj Jain Washington University in Saint Louis Saint Louis, MO 63131

Jain@cse.wustl.edu

IEEE 802.1 Congestion Group Meeting, Denver, March 8, 2006 These slides are available on-line at:

http://www.cse.wustl.edu/~jain/ieee/bcn603.htm

- Congestion Management Components
- □ BCN Mechanism
- □ Simulation Results
- Observations
- □ Parameter Selection
- Near Future Steps

IEEE 802.1 January 8, 2006

Congestion Management Components

- 1. Signaling: Users need to tell/negotiate their QoS requirements with the network
- 2. Admission Control: Network can deny requests that it can not meet
- **3. Shaping**: Traffic is smoothed out so that it is easier to handle
- 4. Policing: Ensuring that the users are sending at the rate they agreed to.
- 5. Marking/Classification: Packets are classified based on the source, destination, TCP ports (application)
- **6.** Scheduling: Different flows get appropriate treatment. Priority Scheduling.
- 7. Drop Policies: Low priority packets are dropped. Per priority Pause
- 8. Routing: Packets are sent over paths that can meet the QoS
- 9. Traffic Monitoring and Feedback: Sources may be asked to reduce their rates to meet the loss rate and delay guarantees

BCN Mechanism

- Backward Congestion Notification Closed loop feedback
 - □ **Detection**: Monitor the buffer utilization at possible congestion point (Core Switch, etc)
 - □ **Signaling**: Generate proper BCN message based the status and variation of queue buffer
 - □ Reaction: At the source side, adjust the rate limiter setting according to the received BCN messages
 - Additive Increase Multiplicative Decrease (AIMD)
- Ref: new-bergamasco-backward-congestion-notification-0505.pdf

IEEE 802.1 January 8, 2006

Parameters for BCN

- Key Parameters
 - □ Threshold for buffer:
 - *Qeq* (Equilibrium),
 - □ *Qsc* (Severe Congestion),
- □ Queue Variation : *Qoff*, *Qdelta*
 - □ Queue is sampled randomly with 0.01 probability
 - □ *Qlen* (current length)
 - \square Qoff = Qeq Qlen, [-Qeq, +Qeq]
 - \Box Qdelta = #pktArrival-#pktDeparture, [-2Qeq, +2Qeq]

AIMD Algorithm

- \Box Source Rate *R*
- Feedback
 - $\Box \quad Fb = (Qoff W \times Qdelta)$
- \Box Additive Increase (Fb > 0)
 - \Box $R = R + Gi \times Fb \times Ru$
- Multiplicative Decrease (Fb < 0)
 - \Box $R = R \times (1 Gd \times Fb)$
- Parameters used in AIMD:
 - 1. Derivative weight W
 - 2. Additive Increase gain *Gi*,
 - 3. Multiplicative Decease Gain *Gd*,
 - 4. Rate Unit Ru

Configuration ES6 Core Switch Congestion point Öü DR2 ES2 ES\$ ES₁ ES4 ES5 Öö öö Ë, SR1 ST3 DR1 Washington University in St. Louis IEEE 802.1 January 8, 2006

Configuration Parameters

- Configuration same as in Davide, IEEE 802.1, May 05
- □ Link Capacity = 10 Gbps (all links)
- □ Switch latency = 1 us (all switches)
- \square Propagation delay = 0.5 us (all links)
- □ TCP only
 - □ ST1-ST4: 10 parallel connections transferring 1MB each and repeat
 - □ SR1: 1 connection transferring 10 KB (wait 16 us after finishing, then repeat)
 - □ SR2: 1 connection transferring 10 KB (wait 1us after finishing, then repeat)
- □ Our simulation Platform: *NS2* simulator

AIMD parameters

$$Fb = (Qoff - W \times Qdelta)$$

 $R = R + Gi \times Fb \times Ru$
 $R = R \times (1 - Gd \times Fb)$

- Cisco's settings
 - \Box Derivative weight: W = 2
 - \Box Increase Gain: Gi = 4
 - \Box Decrease Gain: Gd = 1/64
 - \square Rate Unit: Ru = 8 Mbps
- Our settings
 - \square W, Gi, and Ru are same with Cisco
 - \Box Decrease Gain: Gd = 0.0124
 - □ Since Fb's range is [-80, 80]R becomes negative with Gd = 1/64
 - □ In our simulation, Gd=0.0124 to make sure R is always positive

Simulation Results: Throughput

□ Cisco's results with BCN v1.0

	Reference Flow 1			Reference Flow 2		
CM	Throughput(Tps)	Throughput(Gbps)	Latency(µs)	Throughput(Tps)	Throughput(Gbps)	Latency(µs)
None	609	0.05245	1625	6325	0.54476	157.100
BCN	4491	0.3868	206.394	31515	2.71437	30.730

□ Bulk Traffic:

CM	Average Source Throughput	Standard Deviation/Average (%)		
None	2.486		0.73	
BCN	2.403		5.66	

□ Our Results with BCN v2.0

	Reference Flow 1			Reference Flow 2		
CM	Throughput(Tps)	Throughput(Gbps)	Latency(µs)	Throughput(Tps)	Throughput(Gbps)	Latency(μs)
None	501	0.0442	1977.46	3560	0.3087	279.89
BCN	8697	0.7532	98.88	23485	2.0331	41.56

□ Bulk Traffic:

CM	Average Source Throughput	Standard Deviation/Average (%)		
None	2.5484		4.44	
BCN	2.2022		11.49	

IEEE 802.1 January 8, 2006

Observations

- □ For reference flow, BCNv2 in our simulation performs better than BCNv1(by Cisco), nearly double the rate of BCNv1;
- □ For bulk flow, BCNv2 in our simulation performs similar to BCNv1(by Cisco). Maybe it is because Reference Flows have higher data rates,
- □ Fairness: Our current results always have larger deviation reported by Cisco. Even with None-CM, we have larger standard deviation. Time to fairness is longer.

Symmetric Topology-Buffer Utilization

□ Compared with Cisco's result, the equilibrium is almost the same. However, in our results, there are larger variations. (Reasons: Tradeoff between oscillation size and time to

Parameter Selection

$$R = R + Gi \times Fb \times Ru$$
$$R = R \times (1 - Gd \times Fb)$$

- □ *Qoff*, *Qdelta* are #packets per observation, then *Fb* is #packets per observation (sampling time gap)
- □ Ru is 8 Mbps
- \Box Gi and Gd are not dimension less \Rightarrow Link rate dependent
 - ⇒ Fb should be normalized to be dimensionless
- Our preliminary simulation results show that optimal parameter values depend upon link speeds.
 - ⇒ Need to simulate mixed 1G and 10G environments
- AIMD parameters should be carefully chosen to optimize BCN performance

Near Future Steps

- □ Fix the dimensioning problem
- Asymmetric Topology
- Multi-bottleneck case
- □ Larger/smaller Bandwidth×Delay product networks
- Bursty Traffic
- □ Non-TCP traffic
- □ Interaction with TCP congestion mechanism
- □ Effect of BCN/Tag messages getting lost

Summary

- 1. BCN V2 simulation validate Cisco's results on throughput
- 2. Time to Fairness and oscillation trade-off needs to be studied further
- 3. Parameter setting needs more work Need to modify formula so that parameters are dimensionless
- 4. Need to simulate more configurations: asymmetric, larger bandwidth delay, and multi-bottleneck cases

References

http://ieee802.org/1/files/public/docs2005/

- new-bergamasco-backward-congestion-notification-0505.pdf
- new-bergamasco-bcn-july-plenary-0705.ppt
- new-bergamasco-bcn-september-interim-rev-final-0905.ppt
- new-cm-five-criteria-03-1105.pdf
- new-cm-hazarika-gopi-cm-par-bkgnd-1105.pdf
- new-cm-hazarika-gopi-cm-par-rev-0-8-1105.pdf

http://ieee802.org/1/files/public/docs2006/

- new-barrass-cm-constraints-0106.pdf
- □ new-barrass-cm-overview-0106.pdf
- new-cm-capabilities-of-various-fabrics-0106.pdf
- new-cm-nfinn-1Q-placement-0106-02.pdf
- □ new-cm-nfinn-1Q-placement-0106-03.pdf
- □ new-seaman-cm-congestion-notification-0206-01.pdf
- new-seaman-cm-interim-constraints-doc-structure-0106.pdf
- new-seaman-cm-interim_dot1_integration-0106.pdf
- new-seaman-cm-interim_dot1_operation-0106.pdf

