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IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers repre-
senting varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Insti-
tute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness
in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of
the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar-
ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed
at the time a standard is approved and issued is subject to change brought about through developments in the state of the
art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five
years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users
are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action
to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to
ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the
members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpre-
tation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter 
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity 
of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a 
license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those 
patents that are brought to its attention.
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Editors’ Foreword

Comments on this draft are encouraged. PLEASE NOTE: All issues related to IEEE standards presen-
tation style, formatting, spelling, etc. should be addressed, as their presence can often obfuscate
relevant technical details.

By fixing these errors in early drafts, readers can devote their valuable time and energy to comments that
materially affect either the technical content of the document or the clarity of that technical content.
Comments should not simply state what is wrong, but also what might be done to fix the problem.

Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1
Website:

http://ieee802.org/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had
a policy of considering ballot comments from all who are interested and willing to contribute to the devel-
opment of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding
and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the
members of the working group to develop standards, and are not a general forum.

Comments on this document may be sent to the 802.1 email reflector, to the editors, or to the Chairs of the
802.1 Working Group and Interworking Task Group.

This draft was prepared by:

David V James
JGG
3180 South Court
Palo Alto, CA 94306
+1.650.494.0926 (Tel)
+1.650.954.6906 (Mobile)
Email: dvj@alum.mit.edu

Chairs of the 802.1 Working Group and Audio/Video Bridging Task Group:.

Michael Johas Teener
Chair, 802.1 Audio/Video Bridging Task
Broadcom Corporation
3151 Zanker Road
San Jose, CA
95134-1933
USA
+1 408 922 7542 (Tel)
+1 831 247 9666 (Mobile) 
Email:mikejt@broadcom.com

Tony Jeffree
Group Chair, 802.1 Working Group
11A Poplar Grove
Sale
Cheshire
M33 3AX
UK
+44 161 973 4278 (Tel)
+44 161 973 6534 (Fax)
Email: tony@jeffree.co.uk
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Introduction to IEEE Std 802.1AS™

(This introduction is not part of P802.1AS, IEEE Standard for Local and metropolitan area networks—
Timing and synchronization for time-sensitive applications in bridged local area networks.)

This standard specifies the protocol and procedures used to ensure that the synchronization requirements are
met for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. The design
is based on concepts developed within the IEEE Std 1588, and is applicable in the context of IEEE Std
802.1D and IEEE Std 802.1Q.

Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or
TAI) is not part of this standard but is not precluded.

Version history

Version Date Edits by Comments

0.082 2005Apr28 DVJ Updates based on 2005Apr27 meeting discussions

0.085 2005May11 DVJ – Updated list-of-contributors, page numbering, editorial fixes.

0.088 2005Jun03 DVJ – Application latency scenarios clarified.

0.090 2005Jun06 DVJ – Misc. editorials in bursting and bunching annex.

0.092 2005Jun10 DVJ – Extensive cleanup of Clause 5 subscription protocols.

0.121 2005Jun24 DVJ – Extensive cleanup of clock-synchronization protocols. 

0.127 2005Jul04 DVJ – Pacing descriptions greatly enhanced.

0.200 2007Jan23 DVJ Removal of non time-sync related information, initial layering proposal.

0.207 2007Feb01 DVJ Updates based on feedback from Monterey 802.1 meeting.
– Common entity terminology; Ethernet type code expandability.

0.216 2007Feb17 DVJ Updates based on feedback from Chuck Harrison:
– linkDelay based only on syntonization to one’s neighbor.
– Time adjustments based on observed grandMaster rate differences.

0.224 2007Mar03 DVJ Updates for whiplash free PLL cascading.

— TBD — —
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Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLs are listed below:

General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

Topics for discussion

Readers are encouraged to provide feedback in all areas, although only the following areas have been identi-
fied as specific areas of concern.

a) Layering. Should be reviewed.

TBDs

Further definitions are needed in the following areas:

a) How are leap-seconds handled?

b) How are rate differences distributed? Avoid whiplash?

c) When the grand-master changes, should the new clock transition to it free-run rate instantaneously
or migrate there slowly over time?
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DVJ Perspective on: Timing and 
synchronization for time-sensitive 
applications in bridges local area 
networks

1. Overview

1.1 Scope

This draft specifies the protocol and procedures used to ensure that the synchronization requirements are met
for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. It specifies
the use of IEEE 1588 specifications where applicable in the context of IEEE Std 802.1D and IEEE Std
802.1Q. Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as
UTC or TAI) is not part of this standard but is not precluded.

1.2 Purpose

This draft enables stations attached to bridged LANs to meet the respective jitter, wander, and time synchro-
nization requirements for time-sensitive applications. This includes applications that involve multiple
streams delivered to multiple endpoints. To facilitate the widespread use of bridged LANs for these applica-
tions, synchronization information is one of the components needed at each network element where
time-sensitive application data are mapped or demapped or a time sensitive function is performed. This stan-
dard leverages the work of the IEEE 1588 WG by developing the additional specifications needed to address
these requirements.

1.3 Introduction

1.3.1 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace. Success in this arena requires solutions to multiple topics:

a) Discovery. A controller discovers the proper devices and related streamID/bandwidth parameters to
allow the listener to subscribe to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.
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This draft covers the “Synchronization” component, assuming solutions for the other topics will be devel-
oped within other drafts or forums.

1.3.2 Interoperability

AVB time synchronization interoperates with existing Ethernet, but the scope of time-synchronization  is
limited to the AVB cloud, as illustrated in Figure 1.1; less-precise time-synchronization services are
available everywhere else. The scope of the AVB cloud is limited by a non-AVB capable bridge or a
half-duplex link, neither of which can support AVB services.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

1.3.3 Document structure

The clauses and annexes of this working paper are listed below.

— Clause 1: Overview
— Clause 2: References
— Clause 3: Terms, definitions, and notation
— Clause 4: Abbreviations and acronyms
— Clause 5: Architecture overview
— Clause 7: Duplex-link state machines
— Annex A: Bibliography
— Annex C: Bridging to IEEE Std 1394
— Annex D: Review of possible alternatives
— Annex E: Time-of-day format considerations
— Annex F: C-code illustrations

Figure 1.1—Topology and connectivity
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2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.1,2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

1Replaces ANSI X3.159-1989
2ISO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA
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3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI
reference model.

3.2.2 clock master: A bridge or end station that provides the link clock reference.

3.2.3 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.4 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.5 grand clock master: The clock master selected to provide the network time reference.

3.2.6 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.7 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.8 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.9 MAC client: The layer entity that invokes the MAC service interface.

3.2.10 medium (plural: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.11 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.
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3.2.12 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.13 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.14 protocol implementation conformance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.15 span: A bidirectional channel connecting adjacent stations (two links).

3.2.16 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.17 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.18 transmit (transmission): The action of a station placing a frame on the medium.

3.2.19 unicast: The act of sending a frame addressed to a single station.

3.3 State machines

3.3.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its internal structure. The internal details of the
model are useful only to the extent that they specify the external behavior clearly and precisely.
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3.3.2 State table notation

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

State machines may be represented in tabular form. The table is organized into two columns: a left hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.12). No time period is associated with the transition from one
state to the next.

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—” signifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled
state.

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code 
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.

Table 3.1—State table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — START

passM == 0 2

— 3 TransmitFromControlQueue(); FINAL

FINAL SelectedTransferCompletes() 4 — START

— 5 — FINAL
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Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

3.4 Arithmetic and logical operators

In addition to commonly accepted notation for mathematical operators, Table 3.2 summarizes the symbols
used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.12).

3.5 Numerical representation

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, … format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented
as “1A16” or “110102”.

Table 3.2—Special symbols and operators

Printed character Meaning

&& Boolean AND

|| Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

 = Assignment operator

// Comment delimiter

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
– The subscript notation is consistent with common mathematical/logic equations.
– The subscript notation can be used consistently for all possible radix values.
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MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15” or “AA-55-11”.

3.6 Field notations

3.6.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code,
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassA0) are
also not italicized.

3.6.2 Field conventions

This working paper describes fields within packets or included in state-machine state. To avoid confusion
with English names, such fields have an italics font, as illustrated in Table 3.3.

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Table 3.3—Names of fields and sub-fields

Name Description

newCRC Field within a register or frame

thisState.level Sub-field within field thisState

thatState.rateC[n].c Sub-field within array element rateC[n]
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3.6.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, as illustrated in Table 3.4. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.7 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in
figures using the conventions illustrated by Figure 3.1, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is
the least significant.

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Table 3.4—wrap field values

Value Name Description

0 STANDARD Standard processing selected

1 SPECIAL Special processing selected

2,3 — Reserved

Figure 3.1—Bit numbering and ordering

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

bit
0

bit
31
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3.8 Byte sequential formats

Figure 3.2 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that field1, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the field1 field first. As illustrated on the right hand side of Figure 3.2, a multi-byte field represents a
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

NOTE—Only the left-hand diagram in Figure 3.2 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.9 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated
in the right side of Figure 3.3. The fields within these objects are illustrated as follows: left-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

Figure 3.2—Byte sequential field format illustrations

Figure 3.3—Multibyte field illustrations

field1
field2

field3

field4

field5

field6

field7

field8

byte[5]
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2
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byte[4]

byte[1]

byte[2]

byte[0]
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byte[4] byte[5]

byte[0] byte[1] byte[2] byte[3]

byte[0]

byte[1]

byte[2]

byte[3]

byte[4]

byte[5] twoByteField

MSB LSB

fourByteField

LSBMSB

byte representation

field representation

byte representation
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The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity. 

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in
Figure 3.4. Binary, hex, and decimal values are always shown with a left-to-right significance order,
regardless of their bit-transmission order.

3.10 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.5.

3.10.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

NOTE—The following text was taken from 802.17, where it was found to have benefits:
The details should, however, be revised to illustrate fields within an AVB frame header serviceDataUnit.

Figure 3.4—Illustration of fairness-frame structure

Figure 3.5—MAC address format

a) Sequential-byte format

1 subType

6 sa

2 protocolType

1 hopcount

6 da

(…)

b) Field names

subType

da_lo

sa_lo

protocolType hopCount

da_hi

sa_hi

c) Hexadecimal values

0116

45 6716

48 76 54 3216

FA CE16 0316

AC DE 48 2316

AC DE16

d) Binary values

0000 00012

0100 0101 0110 01112

0100 1000 0111 0110 0101 0100 0011 00102

1111 1010 1100 11102 0000 00112

1010 1100 1101 1110 0100 1000 0010 00112

1010 1100 1101 11102

MSB LSB

oui

6

dependentID

gl

Legend:
l : locallyAdministered
 (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802)

g : groupAddress
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)
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3.10.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the
oui and dependentID provide a unique (within this context) identifier.

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in
Figure 3.6. For the purposes of illustration, specific OUI and dependentID example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.5.

3.11 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.12 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex F.

Figure 3.6—48-bit MAC address format

MSB LSB

AC166 2316 4516 6716

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

DE16 4816

byte transmission order
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4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

AP access point

AV audio/video

AVB audio/video bridging

AVB network audio/video bridged network

BER bit error ratio

BMC best master clock

BMCA best master clock algorithm

CRC cyclic redundancy check

FIFO first in first out

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ISO International Organization for Standardization

ITU International Telecommunication Union

LAN local area network

LSB least significant bit

MAC medium access control

MAN metropolitan area network

MSB most significant bit

OSI open systems interconnect

PDU protocol data unit

PHY physical layer

PLL phase-locked loop

PTP Precision Time Protocol

RFC request for comment

RPR resilient packet ring

VOIP voice over internet protocol

NOTE—This clause should be skipped on the first reading (continue with Clause 5).
This text has been lifted from the P802.17 draft standard, which has a relative comprehensive list.
Abbreviations/acronyms are expected to be added, revised, and/or deleted as this working paper evolves.
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5. Architecture overview

5.1 Application scenarios

5.1.1 Garage jam session

As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The
audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid under-run/over-run at the final D/A converter’s FIFO. The challenge
of low-latency transfers is being addressed in other forums and is outside the scope of this draft.

Figure 5.1—Garage jam session

t0 = 1 ms
A/D conversion

delay

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T
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5.1.2 Looping topologies

Bridged Ethernet networks currently have no loops, but bridging extensions are contemplating looping
topologies. To ensure longevity of this standard, the time-synchronization protocols are tolerant of looping
topologies that could occur (for example) if the dotted-line link were to be connected in Figure 5.2.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology

5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Details of the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer AVB devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

Figure 5.2—Possible looping topology
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5.2.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting grandTime clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Frequent. Frequent (nominally 100 Hz) interchanges reduces needs for overly precise clocks.

5.3 Time-synchronization facilities

5.3.1 Grand-master overview

Clock synchronization involves streaming of timing information from a grand-master timer to one or more
slave timers. Although primarily intended for non-cyclical physical topologies (see Figure 5.3a), the
synchronization protocols also function correctly on cyclical physical topologies (see Figure 5.3b), by
activating only a non-cyclical subset of the physical topology.

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Every AVB-capable station is grand-master
capable, but only one is selected to become the grand-master station within each network. To assist in the
grand-master selection, each station is associated with a distinct preference value; the grand-master is the
station with the “best” preference values. Thus, time-synchronization services involve two subservices, as
listed below and described in the following subclauses.

a) Selection. Looping topologies are isolated (from a time-synchronization perspective) into a
spanning tree. The root of the tree, which provides the time reference to others, is the grand master.

b) Distribution. Synchronized time is distributed through the grand-master’s spanning tree.

Figure 5.3—Timing information flows
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5.3.2 Grand-master selection

As part of the grand-master selection process, stations forward the best of their observed preference values
to neighbor stations, allowing the overall best-preference value to be ultimately selected and known by all.
The station whose preference value matches the overall best-preference value ultimately becomes the
grand-master.

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 5.4a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.4b. To avoid
cyclical behaviors, a hopCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

5.3.3 Grand-master preference

Grand-master preference is based on the concatenation of multiple fields, as illustrated in Figure 5.5. The
port value is used within bridges, but is not transmitted between stations.

This format is similar to the format of the spanning-tree precedence value, but a wider clockID is provided
for compatibility with interconnects based on 64-bit station identifiers.

Figure 5.4—Grand-master precedence flows

Figure 5.5—Grand-master selector
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5.3.4 Synchronized-time distribution

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 5.6a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 5.6b. The active clock agents are illustrated as
black-and-white components; the passive clock agents are illustrated as grey-and-white components.

Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. Within a clock-slave, precise time
synchronization involves adjustments of timer value and rate-of-change values.

Time synchronization yields distributed but closely-matched grandTime values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied grandTime values.

5.4 Rate-normalization requirements

If the absence of rate adjustments, significant grandTime errors can accumulate between periodic updates, as
illustrated in Figure 5.7. The 2 µs deviation is due to the cumulative effect of clock drift, over the 10 ms
send-period interval, assuming clock-master and clock-slave crystal deviations of −100 PPM and +100 PPM
respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave

Figure 5.6—Hierarchical flows

Figure 5.7—Rate-adjustment effects
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transmissions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys
or filtering such irregular functions are thought unlikely to yield similar grandTime deviation reductions.

To reduce such time deviations, a lower-rate (currently assumed to be 80 ms) activity measures the ratio of
each station’s frequency to that of its adjacent neighbor. When these calibration factors are applied, the
effects of rate differences are easily be reduced to less than 1 PPM, based on the aforementioned
time-accuracy assumptions. At this point, the timer-offset measurement errors (not clock-drift induced
errors) dominate the clock-synchronization error contributions.

5.5 Duplex-link delays

On some forms of duplex-link media, time-synchronization involves periodic not-necessarily synchronized
packet transmissions between adjacent stations, as illustrated in Figure 5.8a. The transmitted frame contains
the following information:

precedence—Specifies the grand-master precedence.
grandTime—An estimation of the grand-master time.
localTime—A sampling of the neighbor’s local time.
thatTxTime—The adjacent link’s timeSync transmit time.
thatRxTime—The adjacent link’s timeSync receive time.

Snapshots are taken when packets are transmitted (illustrated as txA and txB) and received (illustrated as rxA
and rxB), as illustrated in Figure 5.8b. The receive snapshot is double buffered, in that the value of rxB0 is
copied to rxB1 when the rxB0 snapshot is taken. Similarly, the value of rxA0 is copied to rxA1 when the
rxA0 snapshot is taken.

The physical entity that triggers the received-frame and transmitted-frame snapshot operations is
deliberately left ambiguous. Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive
snapshot circuits to be located with the MAC. Vendors may elect to further reduce timing jitter by latching
the receive/transmit times within the PHY, where the uncertain FIFO latencies can be more easily avoided.

The the timeSync frame arrives from stationA, the frame’s localTime value is copied to the rxB2 register,
and is simultaneously available with the updated rxB1 snapshot value. Similarly, when the timeSync frame
arrives from stationB, the frame’s localTime value is copied to the rxA2 register, and is simultaneously avail-
able with the updated rxA1 snapshot value. 

Figure 5.8—Timer snapshot locations
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For stationB, the values inserted into each frame include the following:
localTime—The txB value, representing the last timeSync frame-transmission time on this link.
thatTxTime—The rxB2 value, representing a timeSync frame-transmission time on the other link.
thatRxTime—The rxB1 value, representing a timeSync frame-reception time on the other link.
grandTime—The computed grand-master time associated with the co-resident localTime value.

For stationA, the values inserted into each frame include the following:
localTime—The txA value, representing the last timeSync frame-transmission time on this link.
thatTxTime—The rxA2 value, representing a timeSync frame-transmission time on the other link.
thatRxTime—The rxA1 value, representing a timeSync frame-reception time on the other link.
grandTime—The computed grand-master time associated with the co-resident localTime value.

Assuming the local stationA and stationB timers have the same frequencies and the two links on the span
have identical delays, the link delay can be computed at stationB and stationA, based on the contents of the
most-recently received timeSync frame, as specified by Equation 5.1 and Equation 5.2 respectively.

linkDelayB = ((rxB1 - frame.thatTxTime) - (frame.localTime - frame.thatRxTime))/2; (5.1)
linkDelayA = ((rxA1 - frame.thatTxTime) - (frame.localTime - frame.thatRxTime))/2; (5.2)

If the stationA-to-stationB and stationB-to-stationA links have different propagation delays, these linkDelay
calculations do not correspond to the different propagation delays, but represent the average of the two link
delays. Implementers have the option of manually specifying the link-delay differences via MIB-accessible
parameters, within tightly-synchronized systems where this inaccuracy might be undesirable.

5.6 Time synchronization

5.6.1 Gain-peaking avoidance

A transient phenomenon associated with cascaded PLLs is called whiplash or gain-peaking, depending on
how the phenomenon is observed. A whiplash effect is visible as ringing after a injected spike and/or a step
change in frequency. The gain-peaking effect is visible as a frequency gain, that becomes increasingly larger
through cascaded PLLs, for selected frequencies. For basic cascaded PLLs (see Figure 5.9a), this phenome-
non is unavoidable, although its effects can be reduced through careful design or manual tuning of peaking
frequencies.

To avoid this phenomenon when passing through multiple bridges, two signal values are transmitted over
intermediate hops: grandTime and errorTime (see Figure 5.9a). For stability, the grandTime value corre-
sponds to an interpolated DELAY time in the past (DELAY is typically assumed to be four transmission
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intervals). For accuracy, the errorTime value represents errors due to differences in DELAY, as measured by
local-clock and syntonized-clock timers.

Within the context of Figure 5.9a, the clock-master stationA could send time-varying grandTime values and
a zero-valued errorTime value. The stationB bridge outputs a revised rate-interpolated whiplash-free
grandTime value, along with nonzero errorTime values.

The stationC bridge behaves similarly; producing a whiplash-free grandTime output along with revised
errorTime values. The propagation of (relatively DC-free) errorTime values is deferred for a DELAY-time
interval, so that new values can be conveniently interpolated between past-observed values.

The concept of whiplash-free interpolation assumes the presence of relatively stable clock rates. The next
grandTime output value out[m] is computed by interpolating between the last grandTime output value
out[m-1] and the most-recent relay[n]-supplied grandTime values, as illustrated in Figure 5.9b. To
compensate for the back-in-time error, the value of out[m]+DELAY is transmitted as the current grandTime
value.

From an intuitive perspective, the whiplash-free nature of the back-in-time interpolation is attributed to the
use of interpolation (as opposed to extrapolation) protocols. Interpolation between input values never
produces a larger output value, as would be implied by a gain-peaking (larger-than-unity gain) algorithm.
The downside of back-in-time interpolation is the requirement for a side-band errorTime communication
channel, over which the difference between nominal and rate-normalized DELAY values can be transmitted.

A more detailed discussion of the back-in-time interpolation calculations is provided in the following sub-
clauses (see 5.6.2, 5.6.2, and 5.6.2). The formal specification of these algorithms is specified by formal state
machines (see Clause 7) and formal C code (see Annex F).

5.6.2 Received timeSync computations

The baseline link-delay calculations of 5.5 are sufficient for 802.11v and other interconnects wherein the
timeSync turn-around latencies are tightly controlled by the MAC. For 802.3 and other interconnects, the
turnaround times can be done above the MAC and can be much larger than the packet-transmission times.
For such media, the duplex-link delay calculations must be compensated by measured differences in
adjacent-station clock rates, as discussed within this subclause.

Assuming the local stationA and stationB timers have the different frequencies and the two links on the span
have identical delays, the link delay can be computed at stationB based on the contents of the most-recently
received timeSync frame, as specified by Equation 5.3.

Figure 5.9—Cascaded PLL designs

a) Cascaded PLL-error propagation

clock
master

bridge clock
slavebridge

grandTime

errorTimeA B C D

b) Interpolation in the “past”

time

relay[n] current
time

DELAY
relay[n-1] relay[n-1]

interpolation slopes



AVB BRIDGING JggDvj2005Apr16/D0.225
March 5, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

// Computing the link delay at station B, based on neighbor-syntonized values (5.3)
// This code summarizes the behavior of MacToRelay() in Annex F.
#define TICK T10ms // Tx timeSync period
if (rxB1-rxShot0 >= 2*TICK && rxB1-rxShot1 >= 4*TICK) { // Every 4’th cycle

rated = (frame.thatTxTime - txTime1) / (rxB1 - rxShot1); // Computed rated value
rxShot1 = rxShot0; // Save rxB1[n-8]
rxShot0 = rxB1; // Save rxB1[n-4]
txTime1 = txTime0; // Saved txTime[n-8]
txTime0 = frame.thatTxTime; // Saved txTime[n-4]

}
roundTrip = rxB1–frame.thatTxTime; // Round-trip time minus
turnRound = frame.localTime – frame.thatRxTime; // turnaround is due to
linkDelay = (roundTrip – (rated * turnRound)) / 2; // the two cable delays
relay.grandTime = frame.grandTime + linkDelay; // Adjusted grand-time
relay.localTime = rxB1; // Received local-time

NOTE—The rating portion of the linkDelay computation is based on the station-local time within adjacent-neighbor
exchanges and is therefore unaffected by discontinuities in the distributed grand-master time reference.

NOTE—The C code within Annex x has not tracked recent changes to this behavioral summary.

5.6.3 Relayed timeSync computations

At the bridge’s co-resident clock-master ports, an update is performed each time relayed information is
received. The update provides a target 40ms-delayed future value, towards which the grandTime advances,
as summarized in Equation 5.4. 

// Update information when relayed frames arrives. (5.4)
// This code summarizes the behavior of RelayToFrame() in Annex F.
#define THIS_TICK T10ms // Tx timeSync period
#define THAT_TICK T10ms // Rx timeSync period
#define TOCK (2 * (THIS_TICK + MIN(THIS_TICK, THAT_TICK))) // Interpolation interval
#define CLIP_RATE (x, d) ( x > ONE+d ? ONE+d : (x < ONE-d ? ONE-d : x))
delta0 = relay.localTime - localTime0; // Changed localTime
if (delta0 > TOCK && delta1 >= 2*TOCK) { // TOCK-interval updates

grandTime1 = grandTime0; // Saved grandTime[n-1]
localTime1 = localTime0; // Saved localTime[n-1]
grandRate1 = grandRate0; // Saved grandRate[n-1]
errorRate1 = errorRate0; // Saved errorRate[n-1]
grandRated = (relay.grandTime - grandTime0) / localDelta; // Estimate grandRated
grandRate0 = CLIP_RATE(grandRated, PPM250); // clip to grandRate[n]
errorRate0 = (relay.errorTime - errorTime0) / localDelta; // Estimate errorRate
grandTime0 = relay.grandTime; // Saved grandTime[n]
localTime0 = relay.localTime; // Saved localTime[n]
errorTime0 = relay.errorTime; // Saved errorTime[n]

}

NOTE—The C code within Annex x has not tracked recent changes to this behavioral summary.
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5.6.4 Transmitted timeSync computations

At the bridge’s co-resident clock-master port, the current grandTime value is estimated by interpolating a
fixed local-timer amount (40 ms) into the past, as summarized by Equation 5.5. The input error value is
similarly interpolated into the past and incremented by the local-error contribution.

// Update information when transmitted frame is formed. (5.5)
// This code summarizes the behavior of FrameToMac() in Annex F.
#define DELAY (TOCK - ((THIS_TICK + THAT_TICK) / 2)) // Ensures interpolation
lapseTime = txB - DELAY; // Back-in-time location
if (lapseTime < localTime0) { // Remote interpolation:

grandRated = grandRate1; // based on grand rate;
errorRated = errorRate1; // based on rate

} else { // Recent interpolation:
grandRated = grandRate1; // based on grand rate;
errorRated = errorRate1; // based on recent rate

}
grandTime = grandTime1 + (lapseTime-localTime1)*grandRated; // Grand-time estimate
errorTime = errorTime1 + (lapseTime-localTime1)*errorRated; // Error-time estimate
errorPlus = errorTimer + DELAY * (rating - ONE); // adds to cumulative
frame.grandTime = grandTimer; // Extrapolate to future
frame.localTime = txB; // Transmit snapshot
frame.errorTime = (errorTime + errorPlus); // adds to cumulative

NOTE—The C code within Annex x has not tracked recent changes to this behavioral summary.
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5.7 Distinctions from IEEE Std 1588

Advantageous properties of this protocol that distinguish it from other protocols (including portions of
IEEE Std 1588) include the following:

a) Synchronization between grand-master and local clocks occurs at each station:

1) All bridges have a lightly filtered synchronized image of the grand-master time.
2) End-point stations have a heavily filtered synchronized image of the grand-master time.

b) Time is uniformly represented as scaled integers, wherein 40-bits represent fractions-of-a-second.

1) Grand-master time specifies seconds within a more-significant 40-bit field.
2) Local time specifies seconds within a more-significant 8-bit field.

c) Locally media-dependent synchronized networks don’t require extra time-snapshot hardware.

d) Error magnitudes are linear with hop distances; PLL-whiplash and O(n2) errors are avoided.

e) Multicast (one-to-many) services are not required; only nearest-neighbor addressing is required.

f) A relatively frequent 100 Hz (as compared to 1 Hz) update frequency is assumed:

1) This rate can be readily implemented (in today’s technology) for minimal cost.
2) The more-frequent rate improves accuracy and reduces transient-recovery delays.
3) The more-frequent rate reduces transient-recovery delays.

g) Only one frame type simplifies the protocols and reduces transient-recovery times. Specifically:

1) Cable delay is computed at a fast rate, allowing clock-slave errors to be better averaged.
2) Rogue frames are quickly scrubbed (2.6 seconds maximum, for 256 stations).
3) Drift-induced errors are greatly reduced.
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6. Frame-relay abstractions

6.1 Overview

This clause specifies the state machines that support duplex-link 802.3-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

6.2 MAC-relay interface model

The time-synchronization service model assumes the presence of one or more time-synchronized AVB ports
communicating with a MAC relay, as illustrated in Figure 6.1. A received MAC frame is associated with
link-dependent timing information, processed within the TimeSync state machine, and passed to the MAC
relay by the TimeSyncTransmit state machine. The preference of the relayed frame is determines whether
the frame is dropped by the TimeSyncReceive state machines or modified and queued for periodic
transmission on the receiving PHY.

All components are assumed to have access to a common free-running (not adjustable) local timer. There is
not necessarily a one-to-one correspondence between the primitives and formal procedures and the inter-
faces in any particular implementation.

The MAC-relay frame transports a source-port identifier, a leapSeconds time-conversion parameter,
hops&precedence information for grand-master selection, a globally synchronized grandTime,
neighbor-syntonized localTime, and a cumulative errorTime, as illustrated in Figure 6.2. A clock-slave
end-point is expected to low-pass filter the sum of grandTime and errorTime values, thereby yielding its
synchronized image of the grand-master’s current grandTime value.

Figure 6.1—MAC-relay interface model

Figure 6.2—MAC-relay frame components
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6.3 timedSync frames

6.3.1 timedSync frame format

The relayed timedSync (relayed time-synchronization) frame transports specific time-synchronization
related information, as illustrated in Figure 6.3.

NOTE—The grandTime field has a range of approximately 36,000 years, far exceeding expected equipment life-spans.
The localTime and linkTime fields have a range of 256 seconds, far exceeding the expected timeSync frame transmission
interval. These fields have a 1 pico-second resolution, more precise than the expected hardware snapshot capabilities.
Future time-field extensions are therefore unlikely to be necessary in the future.

6.3.1.1 da: A 48-bit (destination address) field that allows the frame to be conveniently stripped by its
downstream neighbor. The da field contains an otherwise-reserved group 48-bit MAC address (TBD).

6.3.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.10), as specified in 9.2 of IEEE Std 802-2001. 

6.3.1.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields.

6.3.1.4 function: An 8-bit field that distinguishes the timeSync frame from other AVB frame type.

6.3.1.5 version: An 8-bit field that identifies the format and function of the following fields (see xx).

6.3.1.6 precedence: A 14-byte field that has specifies precedence in the grand-master selection protocols
(see 6.3.3).

6.3.1.7 grandTime: An 80-bit field that specifies the grand-master synchronized time within the source
station, when the previous timeSync frame was transmitted (see 6.3.5).

Figure 6.3—timedSync frame format
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6.3.1.8 errorTime: A 32-bit field that specifies the cumulative grand-master synchronized-time error.
(Propagating errorTime and grandTime separately eliminates whiplash associated with cascaded PLLs.)

6.3.1.9 portID: An 8-bit field that identifies the port that sourced the ppSync frame.

6.3.1.10 hopCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.3.1.11 localTime: A 48-bit field that specifies the local free-running time within this station, when the
previous timeSync frame was received (see 6.3.7).

6.3.1.12 frameCount: An 8-bit field that is incremented by one between successive timeSync frame trans-
mission.

6.3.1.13 leapSeconds: A 16-bit field that specifies the number of seconds that should be added to the
grandTime value, when converting between xx and yy values. (In IEEE-1588, this is the UTCOffset field.)

6.3.1.14 localTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous timeSync frame was transmitted (see 6.3.7).

6.3.1.15 tickTime: A 48-bit field that specifies the nominal period between timeSync frame transmissions.

NOTE—The tickTime value is a port-specific constant value which (for apparent simplicity) has been illustrated as a
relayed frame parameter. Other abstract communication techniques (such as access to shared design constants) might be
selected to communicate this information, if requested by reviewers for consistency with existing specification
methodologies.

6.3.2 Version format

For compatibility with existing 1588 time-snapshot, a single bit within the version field is constrained to be
zero, as illustrated in Figure 6.4. The remaining versionHi and versionLo fields shall have the values of 0
and 1 respectively.

6.3.3 precedence subfields

The precedence field includes the concatenation of multiple fields that are used to establish precedence
between grand-master candidates, as illustrated in Figure 6.5.

6.3.3.1 priority1: An 8-bit field that can be configured by the user and overrides the remaining
precedence-resident precedence fields.

6.3.3.2 class: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

Figure 6.4—Global-time subfield format

Figure 6.5—precedence subfields
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0versionHi versionLo
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6.3.3.3 timeSrc: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.3.3.4 variance: A 16-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.3.3.5 priority2: A 8-bit field that can be configured by the user and overrides the remaining
precedence-resident clockID field.

6.3.3.6 clockID: A 64-bit globally-unique field that ensures a unique precedence value for each potential
grand master, when {priority1, class, variance, priority2} fields happen to have the same value (see 6.3.4).

6.3.4 clockID subfields

The 64-bit clockID field is a unique identifier. For stations that have a uniquely assigned 48-bit macAddress,
the 64-bit clockID field is derived from the 48-bit MAC address, as illustrated in Figure 6.6.

6.3.4.1 oui: A 24-bit field assigned by the IEEE/RAC (see 3.10.1).

6.3.4.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.3.4.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see 3.10.2).

6.3.5 Global-time subfield formats

Time-of-day values within a frame are based on seconds and fractions-of-second values, consistent with
IETF specified NTP[B7] and SNTP[B8] protocols, as illustrated in Figure 6.7.

6.3.5.1 seconds: A 40-bit signed field that specifies time in seconds.

6.3.5.2 fraction: A 40-bit unsigned field that specifies a time offset within each second, in units of 2-40

second.

The concatenation of these fields specifies a 96-bit grandTime value, as specified by Equation 6.1.

grandTime = seconds + (fraction / 240) (6.1)

Figure 6.6—clockID format

Figure 6.7—Global-time subfield format
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6.3.6 errorTime format

The error-time values within a frame are based on a selected portion of a fractions-of-second value, as
illustrated in Figure 6.8. The 40-bit signed fraction field specifies the time offset within a second, in units of
2-40 second.

6.3.7 localTime formats

The localTime value within a frame are based on a fractions-of-second value, as illustrated in Figure 6.9.
The 40-bit fraction field specifies the time offset within the second, in units of 2-40 second.

6.4 TimeSyncMaster state machine

6.4.1 Function

The time-synchronization service model assumes the presence of one or more grand-master capable entities
communicating with a MAC relay, as illustrated on the left side of Figure 6.10. A grand-master capable port
may also provide clock-slave functionality, so that any non-selected clock-master capable station can
synchronize to the selected grand-master station.

The TimeSyncMaster state machine is responsible for monitoring its port’s rxSync indications, receiving
MAC-relay frames, and sending MAC-relay frames. The sequencing of this state machine is specified by
Table 6.1; details of the computations are specified by the C-code of Annex F.

NOTE—The remaining text within 6.4 represents cut-and-paste text; extensive modifications are needed.

Figure 6.8—errorTime format

Figure 6.9—localTime format

Figure 6.10—Clock-master interface model
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6.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with MAC frames sent into the relay.
Q_RX_MAC—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

6.4.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
info

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of currentTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

port
A data structure containing port-specific information comprising the following:

rxFrame—The last received frame.
rxFrameCount—The value of frameCount within the last received frame.
rxPokeCount—The value of info.frameCount saved from the last poke indication.
rxSnapShot0—The info.snapShot field value from the last receive-port poke indication.
rxSnapShot1—The value of the port.rxSnapShot1 field saved from the last poke indication.
rxSyncFrame—The value of the previously observed timeSync frame.

6.4.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

MacToRelay(pPtr, frame)
Computes the average link-delay, based on neighbor-syntonized timers.
The averaged link-delay value is added to the frame, which is then forwarded over the MAC-relay.

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.
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6.4.5 TimeSyncMaster state machine table

The TimeSyncMaster state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 6.1.

Row 7.2-1: Update snapshot values on timeSync frame arrival.
Row 7.2-2: Initiate inspection of frames received from the lower-level MAC.
Row 7.2-3: Wait for the next change-of-state.

Row 7.2-4: The non-timeSync frames are passed through.
Row 7.2-5: Discard obsolete timeSync frames.
Row 7.2-6: Non-sequential frames are discarded.
Row 7.2-7: Sequential timeSync frames are processed.

Row 7.2-8: Inhibit processing when the frame and snap-shot counts are different.
Row 7.2-9: Broadcast nrevised timeSync frames over the MAC-relay .

Table 6.1—TimeSyncMaster state machine table

Current

R
ow

Next

state condition action state

START (info = Dequeue(Q_CM_SYNC))
!= NULL

1 port.rxSnapShot1 = port.rxSnapShot0;
port.rxSnapShot0 = currentTime;

PASS

(frame = Dequeue(Q_RX_MAC))
!= NULL

2 — TEST

— 3 — START

TEST !TimeSyncFrame(frame) 4 Enqueue(Q_MR_HOP, frame); START

frame.hopCount == LAST_HOP 5 —

frame.count !=
port.rxFrameCount+1

6 port.rxFrameCount = frame.count;

— 7 port.rxFrame = frame;
port.rxFrameCount = frame.count;

PASS

PASS port.rxFrame.frameCount !=
port.rxSnapCount

8 — START

— 9 Enqueue(Q_RX_ISS, 
MacToRelay(&port, port.rxFrame));

port.rxLastTime = currentTime;
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6.5 TimeSyncSlave state machine

6.5.1 Function

The time-synchronization service model assumes the presence of one or more clock-slave capable entities
communicating with a MAC relay, as illustrated on the right side of Figure 6.11. A listener-only clock-slave
capable entity is not required to be grand-master capable.

The TimeSyncSlave state machine is responsible for saving time parameters from relayed timedSync frames
and servicing time-sync requests from the attached clock-slave interface. The sequencing of this state
machine is specified by Table 6.2; details of the computations are specified by the C-code of Annex F.

NOTE—The remaining text within 6.5 represents cut-and-paste text; extensive modifications are needed.

6.5.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_TX_MAC—The queue identifier associated with frames sent to the MAC.
Q_TX_SYNC—The queue identifier associated with txSync, sent from the lower levels.

T10ms
A constant the represents a 10 ms value.

T50ms
A constant the represents a 50 ms value.

T100ms
A constant the represents a 100 ms value.

WORST
All ones, the worst-possible grand-master selection preference, equivalent to: (uint64_t)–1

Figure 6.11—Clock-slave interface model
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6.5.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
info

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of currentTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

port
A data structure containing port-specific information comprising the following:

txSnapShot—The value of the info.time field saved from the last transmit-port poke indication.
txSyncFrame—The value of the next to-be-transmitted timeSync frame.
txSeenTime—The currentTime value when the last timeSync frame was received.
txSentTime—The currentTime value when the last timeSync frame enqueued for transmission.

6.5.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

FrameToMac(pPtr, frame)
Transfers the frame to the MAC, as specified by the C code of Annex F.

RelayToFrame(pPtr, frame)
Copies a high-preference MAC-relay frame to port storage, as specified by the C code of Annex F.
(Low preference MAC-relay frames are simply discarded.)

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.
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6.5.5 TimeSyncSlave state machine table

The TimeSyncSlave state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 6.2.

Row 7.3-1: Relayed frames are further checked before being processed.
Row 7.3-2: Transmit periodic timeSync frames.
Row 7.3-3: The absence of relayed timeSync frames forces a port-timeout update.
Row 7.3-4: Update snapshot values on timeSync frame departure.
Row 7.3-5: Wait for the next change-of-state.

Row 7.3-6: Non-timeSync frames are retransmitted in the standard fashion.
Row 7.3-7: High-precedence timeSync parameters are saved for the next periodic transmission.
Row 7.3-8: Low-precedence timeSync parameters are ignored and discarded.

Row 7.3-9: Discard obsolete timeSync frames.
Row 7.3-10: Form the next timeSync frame and enqueue this frame for immediate transmission.

Table 6.2—TimeSyncSlave state machine table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_MR_HOP))
!= NULL

1 — SINK

(currentTime – port.txSentTime) > 
T10ms

2 port.txLastTime = currentTime; SEND

(currentTime – port.txSeenTime) > 
4 * port.txTickTime

3 port.bestPreference.precedence = LOW;
port.bestPreference.hopCount = 0;
port.rxLastTime = currentTime;

START

(info = Dequeue(Q_TX_SYNC))
!= NULL

4 port.txSnapShot = info.localTime;
port.txSnapCount = info.frameCount;

— 5 —

SINK !TimeSyncFrame(frame) 6 RelayToMac(&port, frame); START

RelayToFrame(&port, frame) ==
TRUE

7 port.txSentTime = currentTime;

— 8 —

SEND port.txFrame.hopCount == 
LAST_HOP

9 — START

— 10 Enqueue(Q_TX_MAC,
FrameToMac(&port, port.txFrame));
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7. Duplex-link state machines

7.1 Overview

This clause specifies the state machines that support duplex-link 802.3-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

7.2 Link-dependent indications

The duplex-link TimeSync state machines are provided with snapshots of timeSync-frame reception and
transmission times, as illustrated within the left-side port of Figure 7.1. These link-dependent indications
can be different for bridge ports attached to alternative media, as illustrated by distinct dotted-line indica-
tions within the right-side port of Figure 7.1.

The rxSync and txSync indications provide a tag (to reliably associate them with MAC-supplied timeSync
frames) and a localTime stamp indicating when the associated timeSync frame was received, as illustrated
within Figure 7.2.

Figure 7.1—Paths of duplex-link indications

Figure 7.2—Contents of duplex-link indications
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7.3 timeSync frame format

7.3.1 timeSync fields

Duplex-link time-synchronization (timeSync) frames facilitate the synchronization of neighboring
clock-master and clock-slave stations. The frame, which is normally sent at 10ms intervals, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 7.3. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

NOTE— Existing 1588 time-snapshot hardware captures the values between byte-offset 34 and 45 (inclusive). The
location of the frameCount field (byte-offset 44) has been adjusted to ensure this field can be similarly captured for the
purpose of unambiguously associating timeSync-packet snapshots (that bypass the MAC) and timeSync-packet contents
(that pass through the MAC).

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit errorTime, 8-bit hopCount,
16-bit leapSeconds, and 6-byte localTime field are specified in 6.3.

7.3.1.1 frameCount: An 8-bit field that is incremented by one between successive timeSync frame
transmission.

7.3.1.2 thatTxTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous timeSync frame was transmitted on the opposing link (see 6.3.7).

7.3.1.3 thatRxTime: A 48-bit field that specifies the local free-running time within the target station, when
the previous timeSync frame was received on the opposing link (see 6.3.7).

Figure 7.3—timeSync frame format

6 da

6 sa

2 protocolType

4 fcs

— Transmitter local-time snapshot (1 cycle delayed)

10 grandTime — Transmitter grand-time snapshot (1 cycle delayed)

6 thatTxTime — Opposing link’s frame transmission time

— Frame check sequence

— Destination MAC address

— Source MAC address

1 function

— Distinguishes AVB frames from others

— Distinguishes timeSync from other AVB frames

1 hopCount — Hop count from the grand master

6 localTime

— Precedence for grand-master selection14 precedence

2 leapSeconds — Additional seconds are introduced as time passes

1 version — Distinguishes between timeSync frame versions

1 frameCount — A (sequence number) count of time-sync frames

6 thatRxTime — Opposing link’s frame reception time

70 bytes total

4 errorTime — Back-prediction error for grandTime computation
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7.3.1.4 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

7.3.2 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can
cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as
listed in Table 7.1. The clock-period events trigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small. 

The send-period events trigger the interchange of timeSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

7.4 TimeSyncReceive state machine

7.4.1 Function

The TimeSyncReceive state machine is responsible for monitoring its port’s rxSync indications, receiving
MAC-relay frames, and sending MAC-relay frames. The sequencing of this state machine is specified by
Table 7.2; details of the computations are specified by the C-code of Annex F.

7.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with MAC frames sent into the relay.
Q_RX_MAC—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

Table 7.1—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic timeSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences
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7.4.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
info

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of currentTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

port
A data structure containing port-specific information comprising the following:

rxFrame—The last received frame.
rxFrameCount—The value of frameCount within the last received frame.
rxPokeCount—The value of info.frameCount saved from the last poke indication.
rxSnapShot0—The info.snapShot field value from the last receive-port poke indication.
rxSnapShot1—The value of the port.rxSnapShot1 field saved from the last poke indication.
rxSyncFrame—The value of the previously observed timeSync frame.

7.4.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

MacToRelay(pPtr, frame)
Computes the average link-delay, based on neighbor-syntonized timers.
The averaged link-delay value is added to the frame, which is then forwarded over the MAC-relay.

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

NOTE—The C code within Annex F has not tracked recent changes to Clause 5 behavioral summary.
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7.4.5 TimeSyncReceive state machine table

The TimeSyncReceive state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 7.2.

Row 7.2-1: Update snapshot values on timeSync frame arrival.
Row 7.2-2: Initiate inspection of frames received from the lower-level MAC.
Row 7.2-3: Wait for the next change-of-state.

Row 7.2-4: The non-timeSync frames are passed through.
Row 7.2-5: Discard obsolete timeSync frames.
Row 7.2-6: Non-sequential frames are discarded.
Row 7.2-7: Sequential timeSync frames are processed.

Row 7.2-8: Inhibit processing when the frame and snap-shot counts are different.
Row 7.2-9: Broadcast nrevised timeSync frames over the MAC-relay .

Table 7.2—TimeSyncReceive state machine table

Current

R
ow

Next

state condition action state

START (info = Dequeue(Q_RX_SYNC))
!= NULL

1 port.rxSnapShot1 = port.rxSnapShot0;
port.rxSnapShot0 = info.localTime;
port.rxSnapCount = info.frameCount;

PASS

(frame = Dequeue(Q_RX_MAC))
!= NULL

2 — TEST

— 3 — START

TEST !TimeSyncFrame(frame) 4 Enqueue(Q_MR_HOP, frame); START

frame.hopCount == LAST_HOP 5 —

frame.count !=
port.rxFrameCount+1

6 port.rxFrameCount = frame.count;

— 7 port.rxFrame = frame;
port.rxFrameCount = frame.count;

PASS

PASS port.rxFrame.frameCount !=
port.rxSnapCount

8 — START

— 9 Enqueue(Q_RX_ISS, 
MacToRelay(&port, port.rxFrame));

port.rxLastTime = currentTime;
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7.5 TimeSyncTransmit state machine

7.5.1 Function

The TimeSyncTransmit state machine is responsible for saving time parameters from relayed timedSync
frames and forming timeSync frames for transmission over the attached link.

7.5.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_TX_MAC—The queue identifier associated with frames sent to the MAC.
Q_TX_SYNC—The queue identifier associated with txSync, sent from the lower levels.

T10ms
A constant the represents a 10 ms value.

T50ms
A constant the represents a 50 ms value.

T100ms
A constant the represents a 100 ms value.

WORST
All ones, the worst-possible grand-master selection preference, equivalent to: (uint64_t)–1

7.5.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
info

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of currentTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

port
A data structure containing port-specific information comprising the following:

txSnapShot—The value of the info.time field saved from the last transmit-port poke indication.
txSyncFrame—The value of the next to-be-transmitted timeSync frame.
txSeenTime—The currentTime value when the last timeSync frame was received.
txSentTime—The currentTime value when the last timeSync frame enqueued for transmission.

7.5.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.
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FrameToMac(pPtr, frame)
Transfers the frame to the MAC, as specified by the C code of Annex F.

RelayToFrame(pPtr, frame)
Copies a high-preference MAC-relay frame to port storage, as specified by the C code of Annex F.
(Low preference MAC-relay frames are simply discarded.)

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

NOTE—The C code within Annex F has not tracked recent changes to Clause 5 behavioral summary.
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7.5.5 TimeSyncTransmit state machine table

The TimeSyncTransmit state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 7.2.

Row 7.3-1: Relayed frames are further checked before being processed.
Row 7.3-2: Transmit periodic timeSync frames.
Row 7.3-3: The absence of relayed timeSync frames forces a port-timeout update.
Row 7.3-4: Update snapshot values on timeSync frame departure.
Row 7.3-5: Wait for the next change-of-state.

Row 7.3-6: Non-timeSync frames are retransmitted in the standard fashion.
Row 7.3-7: High-precedence timeSync parameters are saved for the next periodic transmission.
Row 7.3-8: Low-precedence timeSync parameters are ignored and discarded.

Row 7.3-9: Discard obsolete timeSync frames.
Row 7.3-10: Form the next timeSync frame and enqueue this frame for immediate transmission.

Table 7.3—TimeSyncTransmit state machine table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_MR_HOP))
!= NULL

1 — SINK

(currentTime – port.txSentTime) > 
T10ms

2 port.txLastTime = currentTime; SEND

(currentTime – port.txSeenTime) > 
4 * port.txTickTime

3 port.bestPreference.precedence = LOW;
port.bestPreference.hopCount = 0;
port.rxLastTime = currentTime;

START

(info = Dequeue(Q_TX_SYNC))
!= NULL

4 port.txSnapShot = info.localTime;
port.txSnapCount = info.frameCount;

— 5 —

SINK !TimeSyncFrame(frame) 6 RelayToMac(&port, frame); START

RelayToFrame(&port, frame) ==
TRUE

7 port.txSentTime = currentTime;

— 8 —

SEND port.txFrame.hopCount == 
LAST_HOP

9 — START

— 10 Enqueue(Q_TX_MAC,
FrameToMac(&port, port.txFrame));
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Annexes

Annex A

(informative)
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Annex B

(informative)

Time-scale conversions

The synchronized value of grandTime (grand-master time) is based on the Precision Time Protocol (PTP).
Time is measured in international seconds since the start of January 1, 1970 Greenwich Mean Time (GMT).
Other representations of time can be readily derived from the values of grandTime and the communicated
value of leapSeconds, as specified in Table B.1.

NOTE—The PTP time is commonly used in POSIX algorithms for converting elapsed seconds to the ISO 8601-2000
printed representation of time of day.

Table B.1—Time-scale conversions

Acronym Name
R

ow offset Algorithm

PTP Precision Time protocol 1 0 time = grandTime + offset;

GPS global positioning satellite 2 –315 964 819

UTC Coordinated Universal Time 3 TBD time = grandTime + offset – leapSeconds;

NTP Network Time Protocol 4 +2 208 988 800
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Annex C

(informative)

Bridging to IEEE Std 1394

To illustrate the sufficiency and viability of the AVB time-synchronization services, the transformation of
IEEE 1394 packets is illustrated.

C.1 Hybrid network topologies

C.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of AVB to bridge between IEEE 1394 domains, as illustrated in Figure C.1.
The boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter
station.

C.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure C.2. While not explicitly prohibited, architectural features of such topologies are beyond the scope of
this working paper.

Figure C.1—IEEE 1394 leaf domains

Figure C.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3
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C.1.3 Time-of-day format conversions

The difference between AVB and IEEE 1394 time-of-day formats is expected to require conversions within
the AVB-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by con-
stants are simpler than multiplications by variables. For example, a conversion between AVB and
IEEE 1394 involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure C.3.

C.1.4 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure C.4:

Figure C.3—Time-of-day format conversions

Figure C.4—Grand-master precedence mapping

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes:
Two 32-bit additions for b:

b = ((a<<7) - (a<<2) + a) >> 7;
One 16-bit additions for d:

d = ((c<<2) + c) >> 6;

MSB LSB

macAddressHisp
MSB LSB

systemID pad

eui64

sp systemID

0

macAddressLo

macAddressHi pad macAddressLo
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Annex D

(informative)

Review of possible alternatives

D.1 Clock-synchronization alternatives

NOTE—This tables has not been reviewed for considerable time and is thus believed to be inaccurate.
However, the list is being maintained (until it can be updated) for its usefulness as talking points.

A comparison of the AVB and IEEE 1588 time-synchronization proposals is summarized in Table D.1.

Row 1: The size of a timeSync frame should be no larger than an Ethernet MTU, to minimize overhead.
AVB-SG: The size of a timeSync frame is an Ethernet MTU.
1588: The size of a timeSync frame is (to be provided).

Row 2: Cascaded phase-lock loops (PLLs) can yield undesirable whiplash responses to transients.
AVB-SG: There are no cascaded phase-lock loops.
1588: There are multiple initialization phases (to be provided).

Table D.1—Protocol comparison

Properties

R
ow

Descriptions

state AVB-SG 1588

timeSync MTU <= Ethernet MTU 1 yes

No cascaded PLL whiplash 2  yes

Number of frame types 3  1 > 1

Phaseless initialization sequencing 4  yes no

Topology 5 duplex links general

Grand-master precedence parameters 6 spanning-tree like special

Rogue-frame settling time, per hop 7 10 ms 1 s

Arithmetic complexity numbers 8 64-bit binary 2 x 32-bit binary

negatives 9 2’s complement signed

Master transfer discontinuities rate 10  gradual change

offset limitations 11 duplex-cable match
sampling error

Firmware friendly no delay constraints 12 yes

n-1 cycle sampling 13 yes

Time-of-day value precision offset resolution 14 233 ps

overflow interval 15 136 years
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Row 3: There number of frame types should be small, to reduce decoding and processing complexities.
AVB-SG: Only one form of timeSync frame is used.
1588: Multiple forms of timeSync frames are used (to be provided).

Row 4: Multiple initialization phases adds complexity, since miss-synchronized phases must be managed.
AVB-SG: There are no distinct initialization phases.
1588: There are multiple initialization phases (to be provided).

Row 5: Arbitrary interconnect topologies should be supported.
AVB-SG: Topologies are constrained to point-to-point full-duplex cabling.
1588: Supported topologies include broadcast interconnects.

Row 6: Grand-master selection precedence should be software configurable, like spanning-tree parameters.
AVB-SG: Grand-master selection parameters are based on spanning-tree parameter formats.
1588: Grand-master selection parameters are (to be provided).

Row 7: The lifetime of rogue frames should be minimized, to avoid long initialization sequences.
AVB-SG: Rogue frame lifetimes are limited by the 10 ms per-hop update latencies.
1588: Rogue frame lifetimes are limited by (to be provided).

Row 8: The time-of-day formats should be convenient for hardware/firmware processing.
AVB-SG: The time-of-day format is a 64-bit binary number.
1588: The time-of-day format is a (to be provided).

Row 9: The time-of-day negative-number formats should be convenient for hardware/firmware processing.
AVB-SG: The time-of-day format is a 2’s complement binary number.
1588: The time-of-day format is a (to be provided).

Row 10: The rate discontinuities caused by grand-master selection changes should be minimal.
AVB-SG: Smooth rate-change transitions with a 2.5 second time constant is provided.
1588: (To be provided).

Row 11: The time-of-day discontinuities caused by grand-master selection changes should be minimal.
AVB-SG: Maximum time-of-day errors are limited by cable-length asymmetry and time-snapshot

errors.
1588: (To be provided).

Row 12: Firmware friendly designs should not rely on fast response-time processing.
AVB-SG: Response processing time have no significant effect on time-synchronization accuracies.
1588: (To be provided).

Row 13: Firmware friendly designs should not rely on immediate or precomputed snapshot times.
AVB-SG: Snapshot times are never used within the current cycle, but saved for next-cycle transmission.
1588: (To be provided).

Row 14: The fine-grained time-of-day resolution should be small, to facilitate accurate synchronization.
AVB-SG: The 64-bit time-of-day timer resolution is 233 ps, less than expected snapshot accuracies.
1588: (To be provided).

Row 15: The time-of-day extent should be sufficiently large to avoid overflows within one’s lifetime.
AVB-SG: The 64-bit time-of-day timer overflows once every 136 years.
1588: (To be provided).
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Annex E

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, various possible formats are
described within this annex.

E.1 Possible time-of-day formats

E.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 40-bit seconds and 40-bit fraction fields, as illustrated in
Figure 5.1.

The concatenation of 40-bit seconds and 40-bit fraction field specifies an 80-bit time value, as specified by
Equation E.1.

time = seconds + (fraction / 240) (E.1)
Where:

seconds is the most significant component of the time value.
fraction is the less significant component of the time value.

E.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure E.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3171 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
zero.

Figure 5.1—Global-time subfield format

Figure E.2—IEEE 1394 timer format

seconds fraction

40 bits

LSB

40 bits

MSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB
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E.1.3 IEEE 1588 timer format

IEEE Std 1588-2002 timer format consists of seconds and nanoseconds fields components, as illustrated in
Figure E.3. The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time repre-
sents before or after the epoch duration.

E.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure E.4. This clock is logically incremented once each 16 ns interval.

Figure E.3—IEEE 1588 timer format

Figure E.4—EPON timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000
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Annex F

(informative)

C-code illustrations

This Annex provides code examples that illustrate the behavior of AVB entities. The code in this Annex is purely for informational purposes, and should not be construed
as mandating any particular implementation. In the event of a conflict between the contents of this Annex and another normative portion of this standard, the other
normative portion shall take precedence.

The syntax used for the following code examples conforms to ANSI X3T9-1995.

NOTE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
tion (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction, 
compilation, and execution by critical reviewers.
Also, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character 
landscape mode. This eliminates the need to truncate variable names and comments, so that the resulting 
code can be better understood by the reader.
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// *********************************************************************************************************************************
//                                                                                                 1         1         1         1
//       1         2         3         4         5         6         7         8         9         0         1         2         3
//3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012

// NOTE--The following code is portable with respect to endian ordering,
// but (for clarity and simplicity) assumes availability of 64-bit integers.

#include <assert.h>
#include <stdio.h>

// typedef unsigned char       uint8_t;                                                  // 1-byte unsigned integer
// typedef unsigned short      uint16_t;                                                 // 2-byte unsigned integer
// typedef unsigned int        uint32_t;                                                 // 4-byte unsigned integer
// typedef unsigned long long  uint64_t;                                                 // 8-byte unsigned integer

// typedef signed char         int8_t;                                                   // 1-byte signed integer
// typedef signed short        int16_t;                                                  // 2-byte signed integer
// typedef signed int          int32_t;                                                  // 4-byte signed integer
// typedef signed long long    int64_t;                                                  // 8-byte signed integer

// *************************************************************************************
// Revise the following timeSync frame parameters as the actual values become known
// *************************************************************************************
#define NEIGHBOR  0                                                                      // Neighbor multicast address.
#define AVB_TYPE  0                                                                      // The protocolType for AVB.
#define TIME_SYNC 0                                                                      // The timeSync function.
#define VERSION_A 1                                                                      // The timeSync version.

#define FALSE 0
#define TRUE  1
#define TIMEOUT TRUE
#define MIN(a, b) ((a) > (b) ? (b) : (a))                                                // Minimum value definition
#define ABS(a) ((a) < 0 ? (-a) : (a))                                                    // Minimum value definition
#define ONE ((uint64_t)1 << 40)                                                          // Scaled fraction for 1.0
#define PPM250 ((ONE * 250) / 1000000)                                                   // Scaled 250PPM fraction.
#define CLIP_RATE(x, y) ((x) > ONE+(y) ? ONE+(y) : ((x) < ONE-(y) ? ONE-(y) : (x)))      // Clip within specified rate.
#define CLIP_SIZE(x, y) ((x) > (y) ? (y) : ((x) < (y) ? (y) : (x)))                      // Clip within specified value.
#define LAST_HOP 255                                                                     // Largest hop-count value
#define T10ms (ONE / 100)                                                                // A 10ms error interval
#define THIS_TICK (T10ms)                                                                // 10ms Tx timeSync interval
#define THAT_TICK (T10ms)                                                                // 10ms Rx timeSync interval
#define DELAY (2 * ((THIS_TICK) + (THAT_TICK)))                                          // Interpolation assurance
#define MASK(bits) (((uint64_t)1 << bits) - 1)
#define BITS(type) (8 * sizeof(type))

#define FieldToSigned(fPtr, field) \
 FrameToValue(fPtr, (uint8_t *)(&(fPtr->field)), sizeof fPtr->field, TRUE)               // Convert field to signed
#define FieldToUnsigned(fPtr, field) \
 FrameToValue(fPtr, (uint8_t *)(&(fPtr->field)), sizeof fPtr->field, FALSE)              // Convert field to unsigned
#define BigToFrame(value, fPtr, field) \
 ValueToFrame(value, fPtr, (uint8_t *)(&(fPtr->field)), sizeof fPtr->field)              // Convert field to unsigned
#define LongToFrame(value, fPtr, field) \
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 ValueToFrame(LongToBig(value), fPtr, (uint8_t *)(&(fPtr->field)), sizeof fPtr->field)

typedef struct
{                                                                                        // Double-precise integers
    int64_t  upper;                                                                      // Most-significant portion
    uint64_t lower;                                                                      // Less significant portion
} BigNumber;

typedef uint8_t   Boolean;
typedef uint8_t   Class;
typedef uint8_t   Hops;
typedef uint8_t   Port;
typedef uint16_t  Variance;
typedef int16_t   LeapSeconds;
typedef uint32_t  Priorities;
typedef int64_t   LocalTime;
typedef BigNumber GrandTime;
typedef BigNumber Preference;                                                            // Fields {priorities,clockID}
typedef BigNumber Precedence;                                                            // Fields {preference,hops,port}

typedef struct                                                                           // Time-sync frame parameters
{
    uint8_t da[6];                                                                       // Destination address
    uint8_t sa[6];                                                                       // Source address
    uint8_t protocolType[2];                                                             // Protocol identifier
    uint8_t function[1];                                                                 // Identifies timeSync frame
    uint8_t version[1];                                                                  // Specific format identifier
    uint8_t precedence[14];                                                              // Grand-master precedence
    uint8_t grandTime[10];                                                               // Grand-master time (for last frame)
    uint8_t errorTime[4];                                                                // Cumulative GM-time errors
    uint8_t frameCount[1];                                                               // Transmit count (sequence number)
    uint8_t hopCount[1];                                                                 // Hop-count from the grand master
    uint8_t leapSeconds[2];                                                              // Leap seconds compensation
    uint8_t localTime[6];                                                                // Transmitted timeSync time
    uint8_t thatTxTime[6];                                                               // Opposite-link transmit time
    uint8_t thatRxTime[6];                                                               // Opposite-link received time
    uint8_t fcs[4];                                                                      // CRC integrity check
} TimeSync;
#define sourcePort frameCount                                                            // Alternative source identifier

typedef struct                                                                           // Port entity state
{
    uint64_t  macAddress;                                                                // MAC address of the port

    uint8_t   portID;                                                                    // Destinctive port identifier
    uint8_t   rxPokeCount;                                                               // The information-poke count
    uint8_t   rxFrameCount;                                                              // The timeSync frame count
    LocalTime rxSnapShot0;                                                               // This frame’s arrival time
    LocalTime rxSnapShot1;                                                               // Past frame’s arrival time
    LocalTime rxThisTxTime;                                                              // Frame transmission time
    LocalTime rxThisRxTime;                                                              // Frame reception time
    TimeSync  rxSyncFrame;                                                               // Received timeSync frame
    LocalTime rxLocalTime0;                                                              // Same as rxSnapShot[n-2]
    LocalTime rxCronyTime0;                                                              // Same as frame.localTime[n-2]
    LocalTime rxLocalTime1;                                                              // Same as rxSnapShot[n-1]
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    LocalTime rxCronyTime1;                                                              // Same as frame.localTime[n-1]
    uint64_t  rxRated;                                                                   // Rate difference from neighbor

    LocalTime txSnapshot;                                                                // Transmit frame snapshot
    uint8_t   txFrameCount;                                                              // The timeSync frame count.
    BigNumber txPreference;                                                              // Grand-master preference

    GrandTime txGrandTimed;                                                               // Relayed grandTime information
    LocalTime txLocalTimed;                                                               // Relayed localTime information
    LocalTime txErrorTimed;                                                               // Relayed errorTime information
    GrandTime txGrandTimer;                                                               // Back-in-time grandTime estimate
    LocalTime txLocalTimer;                                                               // Back-in-time localTime estimate
    LocalTime txErrorTimer;                                                               // Back-in-time errorTime estimate
} PortData;

typedef struct                                                                           // Returned values for TsTx()
{
    uint8_t hop_count;                                                                   // Updated hop count
    BigNumber precedence;                                                                // Grand-master precedence
    GrandTime gm_time;                                                                   // Grand-master time
    uint16_t leap_seconds;                                                               // Leap-seconds for time.
} TxFields;

typedef struct
{
    Hops hop_count;
    Precedence precedence;
    GrandTime gm_time;
    LeapSeconds leap_seconds;
} RxFields;

// Basic interface routines
TimeSync    MacToRelay(PortData *, TimeSync, Boolean ok);
Boolean     RelayToFrame(PortData *, TimeSync);
void        FrameToMac(PortData *, TimeSync *);

// A minimalist double-width integer library
BigNumber   BigAddition(BigNumber, BigNumber);
int         BigCompare(BigNumber, BigNumber);
BigNumber   BigShift(BigNumber, int8_t);
BigNumber   BigSubtract(BigNumber, BigNumber);
int64_t     MultiplyHi(uint64_t, int32_t);
int64_t     DivideHi(int64_t, int64_t);

// Other routines
Precedence  FieldsToPrecedence(uint8_t, uint8_t, uint16_t, uint8_t, uint64_t);
BigNumber   FrameToValue(TimeSync *, uint8_t *, uint16_t, Boolean);
BigNumber   FormPreference(BigNumber, uint8_t, uint8_t);
BigNumber   LongToBig(LocalTime);
Port        PreferenceToPort(Preference);
Hops        PreferenceToHops(Preference);
TimeSync    PsTx(PortData *pPtr);
void        ValueToFrame(BigNumber, TimeSync *, uint8_t *, uint16_t);
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// *************************************************************************************
// Port-specific routines, called by corresponding state machines.
// *************************************************************************************

TimeSync
MacToRelay(PortData *pPtr, TimeSync rxFrame, Boolean late)
{
    TimeSync result, *rxPtr, *txPtr;
    GrandTime grandTime;
    LocalTime thisDelta, localTime, thatTxTime, thatRxTime;
    LocalTime nextDelay, cableDelay, error, cronyTime, localDelta, cronyDelta, localDelay, cronyDelay;
    uint8_t hopCount;

    assert(pPtr != NULL);
    rxPtr = &rxFrame;
    txPtr = &result;
    result = rxFrame;
    
    hopCount =   FieldToUnsigned(rxPtr, hopCount).lower;                                 // Hops from the GM station.
    grandTime =  FieldToSigned(rxPtr,   grandTime);                                      // Grand-master time.
    cronyTime =  FieldToSigned(rxPtr,   localTime).lower;                                // Frame transmission time.
    thatTxTime = FieldToSigned(rxPtr,   thatTxTime).lower;                               // Opposing transmit time
    thatRxTime = FieldToSigned(rxPtr,   thatRxTime).lower;                               // Opposing received time.

    assert(hopCount != 255);
    thisDelta = (pPtr->rxSnapShot1 - pPtr->rxLocalTime0);                                // Wait a longer interval before.
    if (thisDelta >= (4 * THIS_TICK))                                                    // computing the rate difference.
    {
        localDelta = pPtr->rxSnapShot1  - pPtr->rxLocalTime1;                            // Neighbor’s timer changes
        cronyDelta = cronyTime - pPtr->rxCronyTime1;                                     // Neighbor’s timer changes
        pPtr->rxRated = DivideHi(localDelta, cronyDelta);                                // Compute rate difference.
        pPtr->rxLocalTime1 = pPtr->rxLocalTime0;                                         // The local-time snapshot.
        pPtr->rxCronyTime1 = pPtr->rxCronyTime0;                                         // The grand-master snapshot.
        pPtr->rxLocalTime0 = pPtr->rxSnapShot1;                                          // The local-time snapshot.
        pPtr->rxCronyTime0 = localTime;                                                  // The grand-master snapshot.
    }

    localDelay = (thatTxTime - pPtr->rxSnapShot1);                                       // Looped-response delay.
    cronyDelay = (localTime - thatRxTime);                                               // Remote-response delay.
    nextDelay = localDelay - (MultiplyHi(cronyDelay, pPtr->rxRated));                    // Computed cable delay  
    cableDelay = MIN(0, nextDelay);                                                      // is never negative.
    grandTime = BigAddition(grandTime, LongToBig(cableDelay + error));                   // Delay compensations.
    hopCount = hopCount+1;                                                               // The GM distance.

    pPtr->rxThisTxTime = localTime;                                                      // This link’s sampled values
    pPtr->rxThisRxTime = pPtr->rxSnapShot1;                                              // go-back on opposing link.
    BigToFrame(grandTime,          txPtr, grandTime);                                    // Compensated GM time.
    LongToFrame(pPtr->rxSnapShot1, txPtr, localTime);                                    // Observed rx-snapshot time.
    LongToFrame(pPtr->portID,      txPtr, frameCount);                                   // Identifies the sending port.
    LongToFrame(hopCount+1,        txPtr, hopCount);                                     // The GM distance.
    return(result);       
}

Boolean
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RelayToFrame(PortData *pPtr, TimeSync rxFrame)
{
    Preference sentPreference, bestPreference;
    TimeSync *rxPtr;
    Precedence precedence;
    GrandTime grandTime;
    LocalTime localTime, errorTime;
    uint16_t newCount;
    uint8_t hopCount, hops, sourcePort;
    Boolean best, none, same;

    assert(pPtr != NULL);
    rxPtr = &rxFrame;

    sourcePort = FieldToUnsigned(rxPtr, frameCount).lower;                               // Source-port value
    hopCount =   FieldToUnsigned(rxPtr, hopCount).lower;                                 // Hop-count parameter
    precedence = FieldToUnsigned(rxPtr, precedence);                                     // GM precedence value
    grandTime =  FieldToUnsigned(rxPtr, grandTime);                                      // Grand-master time value
    errorTime =  FieldToUnsigned(rxPtr, errorTime).lower;                                // Grand-master error value
    localTime =  FieldToSigned(rxPtr, localTime).lower;                                  // Neighbor-local time value

    hops = PreferenceToHops(bestPreference);                                             // Current hopCount value
    newCount = (hopCount > hops) ? MIN(LAST_HOP, hopCount + 15) : hopCount;              // Accelerated loop aging
    sentPreference = FormPreference(precedence, newCount, sourcePort);                   // Receive port precedence
    bestPreference = pPtr->txPreference;                                                 // Previous best precedence
    same = (PreferenceToPort(bestPreference) == sourcePort);                             // This was preferred port
    best = (BigCompare(sentPreference, bestPreference) <= 0) && (hopCount != LAST_HOP);  // This port is preferred
    none = (PreferenceToHops(bestPreference) == LAST_HOP);                               // Obsolete hop count
    if (same || best || none)                                                            // Only the best are taken
    {
        pPtr->txPreference = sentPreference;                                             // Update the preference
        pPtr->txGrandTimed = grandTime;                                                  // Save last recorded
        pPtr->txLocalTimed = localTime;                                                  // relayed-frame resident
        pPtr->txErrorTimed = errorTime;                                                  // time and error values
        return(TRUE);                                                                    // An acceptance indication
    } else {                                                                             // is necessary to reset
        return(FALSE);                                                                   // any pending timeouts
    }
}

void
FrameToMac(PortData *pPtr, TimeSync *txPtr)
{
    GrandTime grandTime, grandTimer;
    LocalTime moved, delta, grandDelta, grandRated;
    LocalTime validRated, errorRated, errorTime;
    uint8_t frameCount;

    assert(pPtr != NULL && txPtr != NULL);                                               // Code-correctness check
    moved = (pPtr->txSnapshot - DELAY) - pPtr->txLocalTimer;                             // Incremental movement
    delta = pPtr->txLocalTimed - pPtr->txLocalTimer;                                     // Past-to-relay localTime
    grandDelta = BigSubtract(pPtr->txGrandTimed, pPtr->txGrandTimer).lower;              // Past-to-relay grandTime
    grandRated = DivideHi(grandDelta, delta);                                            // Past-to-relay rating
    validRated = CLIP_RATE(grandRated, PPM250);                                          // Valid rates within 250PPM
    grandTimer = (validRated == grandRated) ?                                            // Valid rates can be                               
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      BigAddition(pPtr->txGrandTimer, LongToBig(MultiplyHi(grandRated, moved))) :        // in-the-past interpolated
      BigAddition(pPtr->txGrandTimed, LongToBig(MultiplyHi(validRated, delta)));         // or forced-rate initialized
    grandTime = BigAddition(grandTimer, LongToBig(DELAY));                               // For next transmission
    errorRated = DivideHi((pPtr->txErrorTimed - pPtr->txErrorTimer), delta);             // Past-to-relay rating

    pPtr->txGrandTimer = grandTimer;                                                     // Next grandTimer value
    pPtr->txLocalTimer = pPtr->txSnapshot - DELAY;                                       // Next localTimer value
    pPtr->txErrorTimer += MultiplyHi(errorRated, moved);                                 // Next errorTimer value
    pPtr->txFrameCount = frameCount = pPtr->txFrameCount + 1;                            // Next sequence number
    grandTime = BigAddition(grandTimer, LongToBig(DELAY));                               // Transmitted grandTime
    errorTime = pPtr->txErrorTimer + MultiplyHi(DELAY, errorRated - ONE);                // Transmitted errorTime
    
    LongToFrame(NEIGHBOR,           txPtr, da);                                          // Neighbor multicast address
    LongToFrame(pPtr->macAddress,   txPtr, sa);                                          // This port’s MAC address
    LongToFrame(AVB_TYPE,           txPtr, protocolType);                                // The AVB protocol
    LongToFrame(TIME_SYNC,          txPtr, function);                                    // The timeSync frame in AVB
    LongToFrame(VERSION_A,          txPtr, version);                                     // This version number
    LongToFrame(frameCount,         txPtr, frameCount);                                  // The sequence number
    BigToFrame(grandTime,           txPtr, grandTime);                                   // grandTime at txSnapShot
    LongToFrame(pPtr->txSnapshot,   txPtr, localTime);                                   // Transmitted frame time
    LongToFrame(errorTime,          txPtr, errorTime);                                   // Next errorTime value
    LongToFrame(pPtr->rxThisTxTime, txPtr, thatTxTime);                                  // Opposing transmit time
    LongToFrame(pPtr->rxThisRxTime, txPtr, thatRxTime);                                  // Opposing received time
}

// *************************************************************************************
// Alignment and endian-order independent frame-extraction routines.
// *************************************************************************************

BigNumber                                                                                // Extracts field of frame,
FrameToValue(TimeSync *fPtr, uint8_t *fieldPtr, uint16_t length, Boolean sign)           // as signed or unsigned.
{
    BigNumber result;                                                                    // The 128-bit signed result.
    uint8_t *cPtr;
    int i;

    cPtr = fieldPtr;                                                                     // Start from first byte
    if (sign && (int8_t)(cPtr[0]) < 0)                                                   // Check for sign extension
        result.upper = result.lower = (int64_t)-1;                                       // 1’s extended if negative
    else                                                                                 // otherwise, 
        result.upper = result.lower = 0;                                                 // 0’s extended.

    for (i = length - 1; i >= 0; i -= 1, cPtr += 1)                                      // Step through bytes
        if (length >= 8)
            result.upper |= *cPtr << (8 * ( i % 8));                                     // First bytes into upper
        else                                                                   
            result.lower |= *cPtr << (8 * ( i % 8));                                     // Final byes into lower
    return(result);                                                                      // Return BigNumber result
}

void                                                                                     // Place fields into frame,
ValueToFrame(BigNumber value, TimeSync *fPtr, uint8_t *fieldPtr, uint16_t length)        // signed properties ignored.
{
    int i;
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    uint8_t *cPtr;

    cPtr = fieldPtr;                                                                     // First byte location
    for (i = length - 1; i >= 0; i -= 1, cPtr += 1)                                      // Step through the bytes
        if (length >= 8)
            *cPtr = value.upper >> (8 * ( i % 8));                                       // First bytes from upper
        else                                                                             // as well as the
            *cPtr = value.lower >> (8 * ( i % 8));                                       // final bytes from lower.
}

// *************************************************************************************
// Supporting library-like routines.
// *************************************************************************************

Hops
PreferenceToHops(BigNumber preference)
{
    Hops result;

    result = (preference.lower >> BITS(Port)) & MASK(BITS(Hops));
    return(result);
}

Port
PreferenceToPort(Precedence preference)
{
    Hops result;

    result = (preference.lower & MASK(BITS(Port)));
    return(result);
}

Precedence
FieldsToPrecedence(uint8_t priority1, Class class, Variance variance, uint8_t priority2, uint64_t clockID)
{
    BigNumber result;
    uint32_t fields;

    fields = (priority1 & MASK(4));
    fields <<= BITS(class);
    fields  |= class & MASK(BITS(class));
    fields <<= BITS(variance);
    fields  |= variance & MASK(BITS(variance));
    fields <<= 4;
    fields  |= priority2 & MASK(4);
    result.upper = fields;
    result.lower = clockID;
    return(result);
}

BigNumber
LongToBig(int64_t number)
{
    BigNumber result;
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    result.lower = number;
    result.upper = 0;
    if (number< 0)
        result.upper -= 1;
    return(result);
}

BigNumber
FormPreference(BigNumber precedence, Hops hopCount, Port port)
{
    BigNumber result;

    result = BigShift(precedence, -8 * (int)(sizeof(Hops) + sizeof(Port)) );             // Left-shift precedence
    result.lower |= (hopCount << (8 * sizeof(Port))) | port;                             // Merge in hopCount&port
    return(result);                                                                      // Return the result
}

BigNumber                                                                                // Addition of BigNumbers
BigAddition(BigNumber a, BigNumber b)
{
    BigNumber result;
    uint32_t sum, carry;

    result.lower = sum = a.lower + b.lower;                                              // Addition of the LSBs
    carry = (sum < a.lower) ? 1 : 0;                                                     // Determine the carry.
    result.upper += a.upper + b.upper + carry;                                           // Addition of the MSBs
    return(result);
}

BigNumber
BigSubtract(BigNumber a, BigNumber b)
{
    BigNumber result;
    uint32_t sum, borrow;

    result.upper = sum = a.lower - b.lower;                                              // Addition of the LSBs
    borrow = (sum > a.lower) ? 1 : 0;                                                    // Determine the borrow.
    result.upper += a.upper + b.upper - borrow;                                          // Addition of the MSBs
    return(result);
}

// Currently written assuming largest is best.
int
BigCompare(BigNumber a, BigNumber b)
{

    if (a.upper != b.upper)                                                              // More significant compare
        return(a.upper > b.upper ? 1 : -1);
    if (a.lower != b.lower)                                                              // Less significant compare
        return(a.lower > b.lower ? 1 : -1);
    return(0);                                                                           // Comparison returns equal
}

BigNumber



Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 72

JggDvj2005Apr16/D0.225, March 5, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

BigShift(BigNumber value, int8_t shift)
{
    BigNumber result;
    int8_t rightShift, leftShift;

    if (shift == 0)
        return(value);
    if (shift > 0)
    {
        rightShift = shift;
        if (rightShift >= 64)
        {
            result.lower = (value.upper >> (rightShift % 64));
            result.upper = (value.upper > 0 ? 0 : -1);
        } else {
            result.lower = (value.upper << (64 - rightShift)) | (value.lower >> rightShift);
            result.upper = (value.upper >> rightShift);
        }
    } else {
        leftShift = shift;
        if (leftShift >= 64)
        {
            result.upper = value.lower << (leftShift % 64);
            result.lower = 0;
        } else {
            result.upper = (value.upper << leftShift) | (value.lower >> (64 - leftShift));
            result.lower = (value.lower << leftShift);
        }
    }
    return(result);
}

int64_t                                                                                  // x = (a *  b) >> 40,
MultiplyHi(uint64_t value2, int32_t value1)                                              // for all (a,b).
{   
    int64_t upper, lower;

    upper = (value2 >> 40) * value1;                                                     // Add the upper
    lower = ((value2 & (uint64_t)0XFFFFFF) * value1) >> 40;                              // to the lower
    return(upper + lower);                                                               // for the result.
}    

int64_t                                                                                  // x = (a << 32)/b, for
DivideHi(int64_t a, int64_t b)                                                           // for b < 2**48
{
    int64_t sum, rem;
    Boolean flip;

    flip = ((a ^ b) < 0);                                                                // Ensure positive args
    a = (a < 0) ? -a : a;                                                                // for all possible
    b = (b < 0) ? -b : b;                                                                // argument values.

    sum = a / b;                                                                         // The normal divide
    rem = (a % b) << 16;                                                                 // Prepare the remainder
    sum = (sum << 16) + rem / b;                                                         // Scaled by 2**16
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    rem = (rem % b) << 16;                                                               // Prepare the remainder
    sum = (sum << 16) + rem / b;                                                         // Scaled by 2**32
    rem = (rem % b) << 8;                                                                // Prepare the remainder
    sum = (sum << 8) + rem / b;                                                          // Scaled by 2**40
    return(flip ? -sum : sum);                                                           // Correctly signed result
}


