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Abstract 

This contribution analyzes the propagation of error in syntonized frequency in a chain of syntonized 
transparent clocks due to a sinusoidal frequency perturbation at the first clock downstream from 
the master clock.  It is shown that if residence time is much less than frequency update interval a 
very large number of hops is required before the effect of a frequency offset perturbation on 
downstream accumulates to the level of the perturbation (e.g., for residence time on the order of 
0.001 of the frequency update interval, the frequency offset amplitude due to the applied 
perturbation after 100 hops is 0.2% of the applied perturbation amplitude).  For AVB networks, 
where residence time could be as large as one-tenth the frequency update interval, the frequency 
offset accumulates to the level of the perturbation after 11 hops.  After 7 hops, the frequency offset 
is approximately half the level of the applied perturbation.  The phase offset also accumulates 
slowly when residence time is small compared to frequency update interval, though the 
accumulation is faster than for the frequency offset accumulation (e.g., for residence time on the 
order of 0.001 of the frequency update interval, the phase offset amplitude due to the applied 
perturbation after 100 hops is 0.21 of the applied perturbation amplitude).  For AVB networks, 
where residence time could be as large as one-tenth the frequency update interval, the phase 
accumulation is about twice the applied perturbation amplitude after 7 hops.  A scheme (see [8]) 
that does not syntonize the TCs but uses the measured frequency offset relative to the master to 
adjust the phase was also investigated.  Here, the phase accumulation due to a sinusoidal phase 
perturbation is slower than in the syntonized chain case, though the results are almost 
indistinguisable for small ratios of residence time to frequency update interval, even for a very large 
number of hops (e.g., for residence time on the order of 0.001 of the frequency update interval, the 
phase offset amplitude due to the applied perturbation after 100 hops is 0.2 of the applied 
perturbation amplitude).   For AVB networks, where residence time could be as large as one-tenth 
the frequency update interval, the phase accumulation is about 1.2 times the applied perturbation 
amplitude after 7 hops. 
 
This contribution also suggests that if 802.1AS networks must tolerate sinusoidal phase wander in 
the clocks, consideration should be given to the level of wander that must be tolerated and the 
deisred performance.  The examples here used 100 ns sinusoidal wander amplitude; this was 
taken from [6], but no justification was given (either in [6] or here) for this level.  It should be noted 
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that the phase error accumulation results in section 4 are unfiltered; section 5 shows an example of 
the reduction that results after endpoint filtering. 
 
1 Introduction 

Recent discussion on the P1588 reflector [1], [2] has raised concerns that a chain of syntonized 
transparent clocks may exhibit excessive jitter amplification and accumulation due to gain peaking.  
Specifically, it is stated in [1] that the jitter accumulation may be excessive when the period of a 
frequency perturbation is on the order of twice the frequency measurement interval.  It is added in 
[2] that the accumulation occurs due to effective gain peaking in the syntonization mechanism. 
 
It is well-known that large jitter and wander accumulation in a chain of phase-locked loops may 
occur due to excessive gain peaking.  This effect was analyzed in [3] for the case of a chain of 
digital regenerators.  The transfer function and frequency response for such a chain was 
computed, and the frequency response was integrated analytically to obtain the mean-square jitter 
as a function of bandwidth and gain peaking (the integration was necessary because the jitter 
generation was a random process).  The regenerator model of [3] was linear, second-order with 40 
dB/decade roll-off; this model reflected the regenerators commonly used in PDH 
telecommuncations networks at the time.  The effect was subsequently analyzed for SDH, SONET, 
and OTN networks for phase-locked-loop (PLL) based regenerators, using linear, second-order 
models with 20 dB/decade roll-off.  The analysis for OTN is documented in [4].  This analysis uses 
the same techniques as that in [3], i.e., the frequency response for the chain of second-order, 
linear filters is computed and integrated over frequency to obtain mean-square jitter.  The analysis 
of [4] shows that, with 0.1 dB of gain peaking, the jitter network limits for PDH, SDH/SONET, and 
OTN are met for a chain of 50 regenerators (the OTN regenerator hypothetical reference model 
consists of a chain of 50 regenerators; see Appendix III of [4]).  The analysis assumes that the 
regenerators also meet the respective jitter transfer and generation requirements given in [4].  As a 
result of the analyses of [3] and [4] and other similar analyses, the gain peaking for regenerators 
and clocks used in telecommuncations networks is limited to 0.1 dB. 
 
The analyses of [3] and [4] assume a chain of 2nd order PLLs, with either 40 dB/decade roll-off [3] 
or 20 dB/decade roll-off [4].  Such PLLs have inherent gain peaking.  However, the syntonization 
process for a transparent clock (TC) described in section 12.1.2 of [5] is not a second-order PLL.  
In particular, there is no apparent gain peaking present in the syntonization process.  In addition, 
the quantity of interest in a chain of TCs is the frequency offset relative to the master clock at the 
beginning of the chain, and how this frequency offset varies with the number of hops.  The 
primarey uses of this frequency are for measurement of residence time and link propagation time.  
The purpose of the present contribution is to explicitly evaluate the accumulation of frequency 
offset error, if any, that occurs in a chain of syntonized TCs. 
 
The contribution is organized as follows.  A difference equation for the frequency offset relative to 
the master clock is derived in section 2.  This is actually a partial difference equation, i.e., its 
independent variables are discrete time index and hop number index.  The stability of this equation 
as a function of hop number is considered in section 3.  Section 4 analyzes unfiltered phase error 
accumulation.  Section 6 discusses wander tolerance, and shows some example results for filtered 
phase error accumulation.  Conclusions are given in section 7.  References are contained in 
section 8. 
 
2  Transfer function for the syntonization of a TC 

Consider a chain of TCs timed by a master at the beginning of the chain.  The master is labeled 
node 0, and the TCs are labeled nodes 1 through N, respectively.  We assume each TC performs a 
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frequency update every Mth
  synch interval on receipt of the Sync and Follow_Up message for that 

synch interval, and that the frequency update is done before the measurement of residence time 
(i.e., residence time is measured using the new frequency rather than the old).  We assume the 
master frequency is perfect, and neglect phase measurement granularity.  Define the following 
notation: 
 
i = index of Sync message sent for which a frequency update is performed (if a frequency update is 
performed every M Synch messages, then this is actually the Mith Sync message; Sync messages 
for which no frequency update is performed need not be considered in this analysis).  The first 
Sync message is labeled i = 0. 
 
k = index of node number.  The master clock at the beginning of the chain is labeled k = 0; the TCs 
are labeled 1, 2,..., N.  Note that this scheme differs from the numbering in [6], where the GM is 
node 1 and the first TC is node 2.  Figure 1 below illustrates the two numbering schemes. 
 
νk,i = actual frequency offset of TC k relative to the master clock, during the frequency update 
interval between the ith and (i+1)st Sync messages 
 
μk,i = measured frequency offset of TC k relative to the master clock, when the ith Sync and 
Follow_Up messages arrive.  Note that if the measurement process were perfect, then the 
measured value would be equal to the actual frequency offset during the previous frequency 
update interval, i.e., μk,i =νk,i.  However, in general the measurement process is imperfect and this 
is not true. 
 
rk,i = measured residence time of Sync message i at TC k.  Note that this will differ from ideal 
residence time, relative to the master clock, due to the frequency offset of TC k. 
 
Tr = ideal residence time, relative to the perfect master. 
 
TI = frequency update interval, relative to the perfect master. 
 
mk,i = corrected master time at TC k when ith Sync message is received (i.e., corrected for the 
residence times of TCs 1, 2, ..., k-1).  Note that m0,i is the time the ith Sync message is actually sent, 
relative to the master clock. 
 

Node Numbering conventions (initial node is GM, followed by TCs)

GM TC 1 TC 2 TC 3 TC N

Node numbering 
used here

Node 0 Node 1 Node 2 Node 3 Node N

Node numbering 
used in [6]

Node 1 Node 2 Node 3 Node 4 Node N+1

Sinusoidal 
perturbation 

applied to TC 1

 
 
Figure 1.  Illustration of node numbering conventions here and in reference [6]. 
 
The corrected master time is related to the time the Sync message is sent by the master clock and 
the residence times in the upstream TCs by 
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The residence time at TC k is related to the frequency offset of TC k by 
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Note that νk,i appears in Eq. (2-2) rather than νk,i-1 because it is assumed the residence time is 
computed using the updated frequency.  Combining Eqs. (2-1) and (2-2) produces 
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The measured frequency offset of TC k is equal to the ratio of the elapsed local time during a 
frequency update interval to the elapsed corrected master time during the same frequency update 
interval, minus one.  For the frequency offset measured at the arrival of the ith Sync message, this 
may be written 
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The frequency is adjusted by reducing the current frequency by an amount equal to the measured 
frequency offset of the TC relative to the master.  Then, the new actual frequency offset is related 
to the old actual frequency offset by 
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Inserting Eq. (2-4) into Eq. (2-5) produces   
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Now, the frequency offsets are small compared to 1, i.e., |νk,i|<< 1.  Then the terms of O(νk,i

2) are 
small compared to the terms of O(νk,i), and Eq. (2-6) may be approximated to first order in νk,i  as 
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Eq. (2-7) holds for k ≥ 2.  For k > 2, it may be converted to a recursive form by rewriting it for index 
k-1 and subtracting the result from Eq. (2-7).  The result of this is 
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An equation for k = 2 is obtained by simply substituting k = 2 in Eq. (2-7).  Then, Eq. (2-7) is 
equivalent to 
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3 Stability analysis for variation of frequency offset as a 

function of number of hops 

We are interested in how a small frequency perturbation applied at the first TC downstream from 
the master (k = 1) propagates through the successive TC.  The master frequency is assumed 
perfect.  Then, we set 
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where ω is the discrete frequency, A is the amplitude of the perturbation, and j = √-1 (i.e., in this 
section we do not use j as an index).  The first of Eq. (2-9) may be rewritten 
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As expected for linear systems, ν2,i is equal to ν1,i multiplied by a complex frequency response 
H1(ejω).  This means that the resulting frequency offset at any TC is sinusoidal with a respective 
phase (as expected), and we may use the second of Eq. (2-9) to compute the frequency response 
between TCs k and k+1.  To do this, take the z-transform of the second of Eq. (2-9) and then set z = 
ejω.  Taking the z-transform produces 
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where Nk(z) is the z-transform of νk,i, and the result for the z-transform of a shifted sequence has 
been used (i.e., the the z-transform of a sequence obtained by replacing the index by the index 
minus one is equal to z-1 multiplied by the z-transform of the unshifted sequence).  The complex 
freqeuncy response between TCs k-1 and k, with k ≥ 3, is 
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The frequency response at TC k is obtained by multiplying Eq. (3-2) by Eq. (3-4) raised to the k-2 
power (the power is k-2 because, in getting from TC 2 to TC k, k-2 hops are traversed).  The result 
is 
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The amplitude of the response may be obtained, as a function of frequency, by computing the complex 
amplitude of Eq. (3-5).  This is done omitting the constant A as that is the amplitude of the input perturbation 
(and what is of interest here is how the perturbation grows or decays with the number of hops).  The result is 
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where Nk(ejω) is the frequency response between the input perturbation and TC k.  In obtaining Eq. (3-6), we 
used the results 
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The minimum value of the frequency response, Eq. (3-6), is zero, and occurs at zero frequency.  
The maximum value occurrs at odd multiples of π (recall that ω is the discrete frequency).  The 
maximum value is 
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Then 
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It is seen from Eq. (3-10) that the magnitude of the worst-case frequency offset accumulation 
depends on how long the frequency update interval is compared to the residence time.  In general 
IEEE 1588 networks, Tr << TI, and a large number of hops are required for the worst case 
amplitude to exceed 1.  For example, if Tr /TI = 0.001, then the worst case frequency offset 
amplitude after 100 hops accumulates be a factor of 
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In AVB networks, it is planned to hold Sync messages until Follow_Up messages arrive and, in 
worst-case, the residence time could be as long as the synch interval.  The frequency update 
interval is likely to be 10 times the synch interval, i.e., Tr /TI = 0.1.  For a seven hop network, the 
worst-case frequency offset accumulates by a factor of  
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For 10 hops, the result is 
 

( )[ ] 10                 86.0 2.11.02)( 8

max
=== keN j

k
ω  

 
For 11 hops, the result is 
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It is seen that the frequency offset at sucessive nodes does not accumulate to the magnitude of the 
initial perturbation until the 11th hop. 



  - - 8 - - 

 
The factor by which the frequency offset amplitude accumulates, as a function of TC number, is 
plotted in Figure 2 for several ratios of residence time to frequency update interval.  Note that the 
horizontal axis starts at TC 2 because the perturbation is applied at TC 1.  It is seen that, for ratios 
of residence time to frequency update interval of 0.01 and 0.001, the perturbation has negligible 
effect.  In all cases, the effect of the perturbation is diminished at the succeeding 9 nodes after TC 
1 where the perturbation is introduced. 
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Figure 2.  Factor by which frequency offset amplitude, due to applied sinusoidal 
perturbation, accumulates, as a function of TC number, for several ratios Tr /TI. 

 

Appendix I contains detailed plots (obtained using Mathcad) of the magnitude of the frequency 
response (the square root of Eq. (3-6)) as a function of discrete frequency ω, for various numbers 
of hops and ratios of residence time to frequency update interval.  The four successive plots are for 
Tr /TI = 0.001, 0.01, 0.05, and 0.1, respectively.  Each plot contains results for accumulated frequency 
offset magnitde at successive nodes (the second subscript, k, of Nn,k , is the node number minus 1.  
The final plot shows a maximum frequenecy response amplitude at ω = π with amplitude 0.86 for 
node 10 (k = 9), consistent with the above result. 
 
4 Unfiltered phase error accumulation over multiple hops 

Subsequent to the above analysis, the phase error accumulation was analyzed in [6].  That 
analysis agreed fundamentally with the results above, but seemed to differ in detail.  For example, 
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[6] stated that both studies indicated that jitter/wander amplification is not server for (1) a long 
chain of high performance TCs with residence time on the order of 100 μs abd frequency update 
interval 0.1 s, and (2) a short chain of AVB TCs, with residence time on the order of 10 ms and 
frequency update interval 0.1 s.  Reference [6] also found that the amplitude growth as a function 
of number of hops is of the form 
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analogous to Eq. (3-10).  However, the two studies seemed to differ on details such as worst case 
frequency update period and specific values of G0 and a (see Table 1 of [6]).  Part of the difficulty of 
comparing the results of [6] with the results above is that the results above are for accumulation of 
frequency offset, while the results in [6] are for accumulation of phase offset.  Therefore, it is of 
interest to extend the above model to obtain phase offset accumulation. 
 
In this section, the results of sections 2 and 3 are used to total phase error accumulation under the 
assumption that an ordinary clock is collocated with each syntonized transparent clock.  We are 
interested in the component of phase error due to the frequency (or equivalent phase) perturbation 
applied at the first TC downstream from the master (i.e., k = 1) and the effect of the frequency 
perturbation at downstream TCs (i.e., k > 1).  Now, the phase offset at any TC is computed as the 
difference between the timestamp of a Sync message when it arrives at that TC and the corrected 
master egress timestamp for the Sync message.  The latter is corrected for measured propagation 
time on the links upstream from the TC (for the case where the TCs are peer-to-peer) and 
measured residence time in the upstream TCs.  It is seen, therefore, that the accumulated phase 
error due to the frequency perturbation is equal to the sum of the residence time errors in all the 
upsteam TCs.  The residence time error for a single TC is equal to the frequency offset of that TC, 
νk,i, multiplied by the ideal residence time, Tr.  Then, the accumulated phase error, φm,i , at TC m at 
the arrival of the ith Sync message is 
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For a sinusoidal frequency perturbation at TC 1 of the form of Eq. (3-1), we may substitute Eq. (3-
5) into Eq. (4-2) to obtain the resulting accumulated phase error at TC m.  As in section 3, j = √-1 
(i.e., in section 4 we do not use j as an index).    The result is 
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Performing the summation produces 
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Eq. (4-4) expresses the full sinusoidal response of the phase error.  The amplitude of the response is given 
by 
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Eq. (4-5) is almost the desired result.  The parameter A in Eq. (4-5) is the frequency offset 
perturbation amplitude applied at node 1 (the first TC after the master).  However, in [6] the input 
perturbation is expressed as a sinusoidal phase perturbation and not a sinusoidal frequency 
perturbation.  We therefore must express A in terms of the equivalent sinusoidal phase 
perturbation.  This is easily done by noting that if the frequency offset amplitude at the first TC is A, 
the equivalent phase offset amplitude (the quantity testamplitude in the Mathcad file attached to 
[6]) is ATr.  In other words, the frequency offset perturbation multiplied by Tr is equal to the phase 
perturbation testdeviation in the Mathcad file attached to [6].  The factor of 2 is present because the 
largest phase perturbation   If B = ATr is the phase amplitude, then Eq. (4-5) becomes 
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Eq. (4-6) corresponds to the quantity (outputdeviation – testdeviation) in [6]; it is also equal to the 
quantity residencetime*(syntonizedrate – 1) in [6].  Essentially, it is the amount that the 
accumulated phase error exceeds the initial phase error due to the perturbation at the node where 
it is applied. 
 
Figures 3 and 4 illustrate schematically the accumulation of phase and frequency.  They are 
mathematically equivalent to Eqs. (3-3) and (4-2). 
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Figure 3.  Equivalent block diagram for phase and frequency accumulation difference equations 

(stages k > 2). 
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Figure 4.  Equivalent block diagram for phase and frequency accumulation difference equations 

(stage 2). 
 
Appendix II contains plots, generated using Mathcad, of Eq. (4-6) as a function of discrete 
frequency, for various numbers of hops and ratios of residence time to frequency update interval.  
The four successive plots are for Tr /TI = 0.001, 0.01, 0.05, and 0.1, respectively.  The amplitude of 
the sinusoidal perturbation is 100 ns, consistent with [6].   Each plot contains results for 
accumulated phase offset magnitde at successive nodes (the second subscript, k, of φn,k , is the 
node number minus 1.  The plot for Tr /TI = 0.05 is reproduced in Figure 5 below.  The curve for n = 
1 (node 2, i.e., the first TC after the TC where the perturbation is applied)n shows phase 
accumulation amplitude of zero.  This is because the phase error at this TC is the perturbation 
itself; we have subtracted that out because we are interested in the accumulation over and above 
the applied perturbation.  The curve for n = 2 (node 3, i.e., the second TC after the TC where the 
perturbation is applied) shows a phase accumulation amplitude of approximtely 20 ns for ω = 2.  
This corresponds to a period of the applied perturbation of approximately 3.1TI; this is seen by 
noting that the discrete and continuous frequencies are related by 

TTT II /2πω =Ω= ,          (4-7) 
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where Ω is the continuous frequency and is equal to 1/T, where T is the period of the perturbation. 
Then 
 

ωπ /2 ITT = .           (4-8) 
 
For ω = 2, T/ TI= π ≅ 3.1.  Appendix III reproduces Mathcad results of [6] and adds the computation 
of (outputdeviation – testdeviation).  The result is reproduced in Figure 6 below.  In Figure 6, the 
peak value of (outputdeviation – testdeviation) is approximately 8 ns.  In Figure 5, the amplitude of 
the phin,2 curve at ω = 2 is approximately 8 ns.  Figure 7 shows results using the Mathcad file of [6] 
with the frequency of the applied perturbation equal to 2.1TI (i.e., ω slightly less than π).  The results 
show peak value of (outputdeviation – testdeviation) of 1 ns.  The amplitude of the phin,2 curve in 
Figure 5 at ω = π is approximately 10 ns, in agreement. 
 
Table 1 of [6] indicates some other differences between the two studies.  The table indicates that 
the multiplicative factor G0 is 2Tr/TI in the study here, while it is 1 in the study there.  This difference 
is due to the fact that the factor cited for the study here is for frequency offset accumulation, and 
not phase accumulation.  The factor 2Tr/TI is evident in Eq. (3-5), for frequency accumulation (the 
factor of 2 arises from the maximum absolute value of the factor 1- e-jω.  In Eq. (4-6) here, for phase 
accumulation, the factor is 1 in agreement with [6].  The value of a in Table 1 of [6] differs for the 
two studies because the values are cited for different perturbation periods, i.e., 2TI here and 3TI  in 
[6].  It is not clear why [6] cites the worst case wander as occuring at 3.1TI  and not 2TI; Figures 6 
and 5 below, which were obtained using the Mathcad listing provided in [6], show larger wander for 
2.1TI.  The peaking factors and hops to double in Table 1 of [6] are different for the two studies 
both because the results are cited at different periods for the perturbation and because one set of 
results is for frequency offset accumulation and the other phase accumulation.  The latter is 
evident by noting that Eqs. (4-6) for phase accumulation and (3-6) for fequency offset  
accumulation are different.  Our conclusion is that the model here and the model in [6] are 
consistent. 
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Figure 5.  Phase accumulation frequency response magnitude for nodes 2 (phin,1), 3 (phin,2), 4 (phin,3), 5 

(phin,4), 6 (phin,5), and 10 (phin,9), respectively, for Tr /TI  = 0.05. 
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Figure 6.  Results for (outputdeviation-testdeviation) using Mathcad file provided in [6].  This quantity is the 

frequency offset at the first node after the node where the perturbation is applied, multiplied by the 
ideal residence time.  The period of the applied perturbation is 3.1TI. 
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Figure 7.  Results for (outputdeviation-testdeviation) using Mathcad file provided in [6].  This quantity is the 

frequency offset at the first node after the node where the perturbation is applied, multiplied by the 
ideal residence time.  The period of the applied perturbation is 2.1TI. 
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5 Wander tolerance requirements 

The applied sinusoidal perturbation in the previous sections has an amplited of 100 ns.  The amplitude 
response to this is evaluated for frequencies between 0 and 0.5/TI (the latter is the Nyquist rate for period TI).  
The value 100 ns was taken from [6]; however, there is no indication in [6] why this value was chosen. It 
should be noted that the contribution to clock jitter/wander due to phase measurement granularity is 40 ns.  
The clock phase noise model used in [7] had noise levels considerably below 100 ns (TDEV for integration 
times (i.e., observation intervals) less than 0.4 s were less than 1 ns.  If it is desired that a synchronization 
chain in 802.1AS tolerate sinusoidal clock phase wander applied at a node, more consideration should be 
given to what levels of wander should be tolerated (and what the allowable response should be). 
 
In addition, note that the phase errors computed here are unfiltered; these levels would be reduced by 
endpoint filtering.  For example, Figure 8 shows the  results corresponding to Figure 5, but with an endpoint 
filter with an equivalent 1 s time constant 
 

19.01
1.0)( −−

=
z

zH .          (5-1) 

 
(The equivalent time constant is seen to be 1 s by noting that this filter reduces a step input to 1/e ≅ 0.37 of its 
value after 10 steps, i.e., (0.9)10 = 0.35, and that 10 steps here corresponds to 1 s with TI = 0.1 s.) 
 
Comparing Figures 5 and 8, it is seen the phase accumulation results are reduced by a factor of 20. 
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Figure 8.  Filtered phase accumulation frequency response magnitude for nodes 2 (phin,1), 3 (phin,2), 4 (phin,3), 
5 (phin,4), 6 (phin,5), 7 (phin,7),  and 9 (phin,9), respectively, for Tr /TI  = 0.05.  The filter is an first-order, low-pass 
filter with equivalent time contant of 1 s. 
 

6 Split path syntonization scenario 

Reference [8] proposes a scheme that attempts to avoid phase error accumulation in nodes 
subsequent to the TC where the sinusoidal phase error perturbation is applied, by using the free-
running node clock frequencies to compute residence times.  However, the corrected master event 
timestamps based on the unsyntonized TC clocks are used to estimate the frequency offset of 
each TC relative to the master.  This frequency offset estimate is then used to compute the 
residence time error for that TC.  The residence time errors in the successive TCs are accumulated 
in a separate field, and can be used to correct the phase estimate.  A schematic for this scheme, 
taken from [8], is reproduced in the second and third figures of Appendix IV (for comparison, a 
schematic for the syntonized TC, also taken from [8], is reproduced in the first figure of Appendix 
IV). 
 
We now analyze the scheme proposed in [8].  In the notation of section 2 of the current document, 
the frequency offset of a TC relative to the master, μk,i, is measured, but is used only to correct the 
phase and not the frequency.  If we let νk,i be the actual (i.e., free-running) frequency offset of TC k 
relative to the master, then the measured frequency offset at node k is still given by Eq. (2-4), but 
now the νk,i are not adjusted.  Expressing the final equation of Eq. (2-4) to O(νk,i) (i.e., neglecting 
higher order terms, because the frequency offsets are still small compared to 1), we obtain 
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In Eq. (6-1), the perturbation is applied at node 1, which means the frequency offset of node 1 
varies with time.  The frequency offsets of the other nodes are fixed.  Then, in the summation, 
terms for j = 2, 3, ..., k-1 vanish, and we obtaibn 
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The measured frequency offset given by Eq. (6-2) is used to obtain the error in residence time due 
to lack of syntonization at each respective node.  The total error is obtained by accumulating over 
nodes 2 through k (see the second figure in Appenix IV, taken from [8]).  The resulting cumulative 
error due to lack of syntonization is 
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We have omitted the direct contribution from node 1, i.e., the TC where the syntonization is 
applied, as we did in the previous sections.  The contribution from this TC is simply the applied 
perturbation itself.  The desire here is to see the accumulation beyond this quantity. 

The actual time the ith Sync message arrives at TC k is (the notation is the same as in section 2) 

riikactual Tkmm )1(,0,, −+= .         (6-4) 

The corrected master time at TC k, based on free-running clocks used to measure residence time, 
is 
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In Eq. (6-5), the measured frequency offset sum of Eq. (6-3) is used to correct the actual frequency 
offset sum in the last term of Eq. (6-5); this is done by replacing  νk,i  by νk,i - μk,i.  The result is 
(again, omitting the direct contribution from TC 1, where the perturbation is applied) 
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The first summation in Eq. (6-6) is zero because the frequency offsets for nodes 2 through k do not 
vary.  Omitting this term and comparing with Eq. (6-4), it is seen that the phase error accumulation 
is 
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The first term is the direct contribution of the perturbation; as noted above, we ignore this term 
because we are interested in the amount that the phase error accumulates beyond this term.  
Inserting a sinusoidal frequency variation as in Eq. (3-1) and noting that the equivalent sinusoidal 
phase variation amplitude is B = ATr (see section 4), we obtain for the phase error accumulation 
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The magnitude of the phase error accumulation frequency response is (using Eq. (3-7) 
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The maximum amplitude of the phase error accumulation occurs for ω = π, i.e., period equal to 
twice the frequency update interval.  The result is 
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The corresponding result for the case of syntonized TCs is given by Eq. (4-6) with ω = π, i.e. 
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Comparing these results, it is seen that Eq. (6-11) reduces to Eq. (6-10) for Tr << TI, but Eq. (6-11) can 
exceed Eq. (6-10) by a large margin when Tr  is appreciable compared to TI.  Figure 9 plots the ratio of the 
accumulation factor of Eq. (6-11) to the accumulation factor of Eq. (6-10), i.e., 
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for various values of k and Tr / TI. 
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Figure 9.  Plot of ratio of growth factors for phase accumulation for syntonized TC chain to phase 
accumulation for unsyntonized TC chain. 
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7 Conclusions 

The analysis shows that if Tr << TI, a very large number of hops is required before the effect of a 
frequency offset perturbation on downstream accumulates to the level of the perturbation.  For 
example, for residence time on the order of 0.001 of the frequency update interval, the frequency 
offset amplitude due to the applied perturbation after 100 hops is 0.2% of the applied perturbation 
amplitude.  For AVB networks, where it is likely that Tr /TI  = 0.1 in very worst case, the frequency 
offset accumulates to the level of the perturbation after 11 hops.  After 7 hops, the frequency offset 
is approximately half the level of the applied perturbation.  The phase offset also accumulates 
slowly when residence time is small compared to frequency update interval, though the 
accumulation is faster than for the frequency offset accumulation (e.g., for residence time on the 
order of 0.001 of the frequency update interval, the phase offset amplitude due to the applied 
perturbation after 100 hops is 0.21 of the applied perturbation amplitude).  For AVB networks, 
where residence time could be as large as one-tenth the frequency update interval, the phase 
accumulation is about twice the applied perturbation amplitude after 7 hops.  A scheme (see [8]) 
that does not syntonize the TCs but uses the measured frequency offset relative to the master to 
adjust the phase was also investigated.  Here, the phase accumulation due to a sinusoidal phase 
perturbation is slower than in the syntonized chain case, though the results are almost 
indistinguisable for small ratios of residence time to frequency update interval, even for a very large 
number of hops (e.g., for residence time on the order of 0.001 of the frequency update interval, the 
phase offset amplitude due to the applied perturbation after 100 hops is 0.2 of the applied 
perturbation amplitude).   For AVB networks, where residence time could be as large as one-tenth 
the frequency update interval, the phase accumulation is about 1.2 times the applied perturbation 
amplitude after 7 hops. 
 
In addition, if 802.1AS networks must tolerate sinusoidal phase wander in the clocks, consideration 
should be given to the level of wander that must be tolerated and the deisred performance.  The 
examples here used 100 ns sinusoidal wander amplitude; this was taken from [6], but no 
justification was given (either in [6] or here) for this level.  It should be noted that the phase error 
accumulation results in section 4 are unfiltered; section 5 shows an example of the reduction that 
results after endpoint filtering. 
 
It may be asked why the frequency offset downstream of a perturbation should not be at least at 
the level of the perturbation itself.  The reason is that any given TC is still syntonizing to the 
master.  The frequency offset at an intermediate TC affects only the residence time measurement.  
Furthermore, the frequency offset measured at a particular TC is impacted only to the extent that 
successive residence times at upstream TCs are different (by successive, we mean at successive 
frequency update times).  If intermediate residence times are in error but did not vary, the 
syntonization of a downstream TC would not be affected (though the time synchronization of the 
system would most definitely be affected). 
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Appendix I.  Mathcad listing and plots for frequency offset accumulation results. 
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Appendix II.  Mathcad listing and plots for phase error accumulation results. 



p 1 5..k 1 9..
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perturbation applied at node 1
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Appendix III.  Modification listing from [6] to obtain phase error time history at TC 3, for perturbation 
period equal to 3.1 times the frequency update interval. 
 



msec 10 3
nsec 10 9

simsteps 150
i 0 simsteps 1..

syncperiod 10 msec.

syntonizedsteps 10

residencetime 5 msec. cableDelay 10 nsec.

testperiod 3.1 syntonizedsteps. syncperiod.
testamplitude 100 nsec.

issuetimei i syncperiod.

SyncArrivali issuetimei 5 msec. 2 cableDelay.

NodeClockOffset 0.5

SEITi SyncArrivali NodeClockOffset

preciseOriginTimestampi issuetimei

meanpathdelay cableDelay

testdeviationi testamplitude sin 2( ) π. i. syncperiod
testperiod

..

follow_upCorrectionFieldi 5 msec. cableDelay testdeviationi

CMETi preciseOriginTimestampi meanpathdelay follow_upCorrectionFieldi

integrationstarti syntonizedsteps floor i
syntonizedsteps

0.001 1.

syntonizedratei 1 i syntonizedsteps<if

CMET integrationstarti syntonizedsteps CMET integrationstarti

SEIT integrationstarti syntonizedsteps SEIT integrationstarti

otherwise

residencecorrectioni residencetime syntonizedratei
.

idealoutputtimei SyncArrivali residencetime

outputFollow_upCorrectionFieldi follow_upCorrectionFieldi meanpathdelay residencecorrectioni



outputFollow_upPreciseOriginTimestampi preciseOriginTimestampi

effectiveOutputtimei outputFollow_upCorrectionFieldi outputFollow_upPreciseOriginTimestampi

outputdeviationi effectiveOutputtimei idealoutputtimei

rmsinputdeviation 1
simsteps

i

testdeviationi
2.

1
2

rmsinputdeviation 7.105 10 8.=

rmsoutputdeviation 1
simsteps

i

outputdeviationi
2.

1
2

rmsoutputdeviation 7.557 10 8.=

gainpeaking rmsoutputdeviation
rmsinputdeviation gainpeaking 1.064=

20 log gainpeaking( ). 0.535=
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Appendix IV.  Figures of reference [8]. 
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