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Outline: QCN Stability Factors

• Case I: Derivative Gain “w”
impact of fixed w value

• Case II: Adaptive Sampling “Ps”
analysis of loop stability vs. delay

• Case III: Primal-Dual stability conditions

• Conclusions



Case I: Impact of Fixed Derivative Gain

Delay effect through “w”

QCN stability with w=2.0 across a range of delays 
typical for small/medium datacenters
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QCN Feedback

QCN feedback reduction: 2D 1D, from {q, q’} to Fb-(t)
1. System’s state variables (queue load sensor*)

1. q = Qoff = q(t) – Qeq , and,
2. q’ = Qdelta = dq/dt.

2. Negative-only Fb is signaled
1. Fb-(t) < 0
2. Fb-(t) = (q(t) – Qeq) + w*(dq/dt) = q + w*q’ ,   w = derivative gain
3. Calculated in situ (per switch queue) and 6b quantized as a single state var Fb .

3. According to pole-zero analysis the derivative gain w provides a “leading 
zero” predictor => should compensate the variable lag/delay.

4. Not possible in QCN: w=2.0 is (i) fixed; (ii) the Fb value is quantized @ CP
in a single var, (iii) then passed to RP after variable lag. 
- Control theory tells us to adjust w per feedback loop. (which...?)
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A. Negligible RTT => Overcompensation => False Recovery... Must reduce w
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• Study effect of queuing delays in FT

RTTe2e = Σtqueuing + Σttransport

a) Σtt >> Σtq formal stability conditions
aka Type 1 stability in primal-dual

b) Σtq >> Σtt ‘stochastic’ stability
aka Type 2 stability, less formalized

(a) well established in theoretical TCP and primal-dual CM studies
Impact of long link delay previously shown in .1au

(b) We study a 5-level fat-tree w/ negligible RTTlink
RTTe2eMax = Σtq = 5 * 100pkt ~ 0.6ms 

B. Non-negligible RTT => Undercompensation => Must increase w
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B. 5-level fat tree: QCN w/ w=2.0
May take longer to stabilize? See next...
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Longer HS duration, still no stable operation...
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Case I Recommendation: Adjust W w/ RTT
Fixed derivative gain Instability & Collapse (consistent in fat-trees). Hence...
• Make “lead zero” compensation possible in QCN (enable D from PID)

CP’s role 
the Fb value should NOT be calculated and quantized @ CP in a single var

– send q and q’ independently quantized to RP

RP’s role
calculates the Fb value per flow (or group thereof) based on  q, q’ and w
w=2.0 is (i) a default param value, not fixed – it differs per flow; 
reconsider the RP table: How to plug w?

– w = O(RTT) => RP sends RTT probe to reflection point (CPID or destination) 
e.g. w = lg(rtt(t) / RTTref) ), 
retain first 2 terms of Taylor series approximation ln(1+x) = x - x2/2 

• Add: Delay probing 
ideally RP CP RP (requires CPID)
e2e RTT probing: TBD.

Q: Is an adaptive w sufficient for stability?



Case II: Adaptive Sampling Rate “Ps”

Delay effect through “Ps”

QCN stability with adaptive sampling under 
increasing delays
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Primal side of loop: QCN-hat Rate Increase 

Rate Increase Control (RIC) in 3 concurrent/sequential phases

1) (Discounted?) Extra/Fast recovery: Reclaim the previous Rd by binary increase
tFb-<  t  ≤ tFR => rnew +

* Double integrator w/ (a) initial condition Rd; (b) enable tFb- ; (c) reset. Executes only once after enable. Byte-based 
counters, possibly enhanced w/ timer (switch condition?). 

2) Active (AI) or hyperactive increase (MI): Probing for the previous equil.
tFR ≤ t  < tAI/MI => rnew ≈ ext

* the choice of AI vs. MI depends on traffic and CM target

3) Drift: MI to claim excess C (newly available Bw)
tAI/MI ≤ t   => multiplicative increase 

4) Fb-hat = Fb-hat + Fb i , for i < k*50 else Fb-hat = Fb-hat/2 
+ integrator to grab newly available Bw 
- introduces an additional pole
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Dual side: QCN as a Control Loop w/ Lag (T) and Delay (τ)
What happens when delay exceeds the dominant lag? 
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1. Ps ↑ => T↓ ( improved observability)

2. τ = RTTe2e↑ (2-5 orders of magnitude)

non-linear, but of 
different rates

RTT delay

Sampling/Marking lag

• Delay fundamentally affects closed loop control. Critical when T > τ
• QCN1: load sensor model reduced to 1st order system w/ dominant lag 

(sampling time constant T) and non-negligible delay (τ = RTTe2e)

1. Note: QCN’s control loop is a higher order system

2. τ =  τqueue +  τtransport ≈  τ queue  , Conservative assumption in datacenters 

3. T = 1/fs = 1/ (Ps*λaggr) = 1/ (Ps*n*λ(t)) , n = no. flows @ CP, λ(t) = rate

1. 0< Ps ≤ 1 , 
2. QCN: Ps = 1..10%

4. (1 + 3) => 

Analyse the effect of “Ps : τ”-ratio during HS
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Why QCN’s Adaptive Sampling Depends on RTT probing?

• Observations
1. Whenever delay exceeds sampling lag the loop becomes unstable

1. Hence the intrinsic conflict between increasing Ps and delay stability
2. No clear trade-off is possible w/ RTT knowledge

2. Sampling is aggregate @ CP, while Fb is per flow @ RP

3. CP does not know RTT, nor “n” (# flows)

4. Flooding RPs w/ bursts of outdated feedback requires adaptivity
1. near RP’s benefit directly from an increased Ps
2. remote RP’s don’t... (must filter - decimation, Kalman)

• RTT probing is a good candidate
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Matlab Demo: Delay Impact on Closed Loop Stability

• QCN control loop 
primal: switched increase/decrease controllers => ~ PID
dual: 1st order load sensor

• Stability depends on Ps, RTT, w, Gain and additional poles introduced by 
switching (lumped in Ti)

fragile stability: open loop recovery adds to lag reduced phase margin

• Take home 
Stability vanishes proportional to Ts/τ
High sensitivity to tuning



IBM Research GmbH, Zurich 15

Case III: Primal-Dual Stability Condition
From R. Johari and D.K.H. Tan. End-to-end congestion control for the Internet: delays and 

stability. IEEE/ACM Transactions on Networking, 9(6):818–832, 2001.

• Stability* condition under non-negligible delays 
D= RTT delay; pj= marking; xs= rate; kr= gain. 

• Seen as a theoretical optimization problem, the primal-dual QCN 
algorithm must have a locally stable* solution depending on delay. 

* predominance of queuing vs. transport delays in datacenters enforce 
stochastic stability conditions

• A 3rd argument for delay probing.
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Conclusions and Recommendations

• We have analysed the delay impact on
1. Fixed derivative gain w/ feedback degree reduction and calculation in switch
2. Adaptive sampling

Conclusions
1. Lack of delay adaption fundamentally impacts stability 
2. No trade-off is apparent w/o actual delay knowledge

Recommendations
1. See pp. 9, 13 and 15

2. Adopt RTT probing.
1. Proposed subpath probing: RP CP RP, using CPID
2. If the above is not desirable (CPID issue), resort to e2e RTT probing (impact TBD).
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Backup and Appendix
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Simulation Parameters (see also fat tree specs for details)
• Traffic

I.i.d. Bernoulli arrivals
Uniform destination distribution (to all nodes 
except self)
Fixed frame size = 1500 B

• Switch
VOQ with 2.4MB shared mem
Partitioned memory per input, shared among all 
outputs
No limit on per-output memory usage
PAUSE enabled

Applied on a per input basis based on local 
high/low watermarks
watermarkhigh = 141.5 KB
watermarklow = 131.5 KB

• Adapter
RLT: VOQ and single; RR service
One rate limiter per destination
Egress buffer size = 1500 KB,
Ingress buffer size = Unlimited
PAUSE enabled

watermarkhigh = 150 – rtt*bw KB
watermarklow = watermarkhigh - 10 KB

• QCN and ECM base
W = 2.0
Qeq = 37.5 KB 
Gd = 0.5 / ((2*W+1)*Qeq)
Gi0 = (Rlink / Runit) * ((2*W+1)*Qeq)
Gi = 0.1 * Gi0

Psample = 2% (on average 1 sample 
every 75 KB
Runit = Rmin = 1 Mb/s
BCN_MAX enabled, thshld = 150 KB
BCN(0,0) dis/enabled, thshld =300KB

• QCN
Drift Factor = 1.005
Timer Period Drift = 0.0005 s
Extra Fast Recovery  enabled
EFR MAX disabled. 
A = 3 Mbps
Fast Recovery Threshold = 5
Hyper Active Increase disabled
No Fb-Hat
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1. Shown 5L fat tree, Output Generated HS
1. Tested from 3 to 7 levels: 16 to 256 nodes
2. Traffic: OG of small to medium severity; shown 100->10% reduction
3. tHS

1. short: 100-500ms
2. long: 200-1100ms

2. N2 flows: e.g. for 256 nodes => ~ 64K flows
1. Distribs: uniform traffic without self-traffic. Bernoulli departure times and uniform across 

destinations. Only the flows going to the HS are recorded (256 nodes --> 255 flows) and the global Tput. 

3. OG 
1. 0.5 background traffic. 
2. HS host reduces service rate to 10% 
3. HSV = 5 

Non-negligible RTT => Undercompensation => Instability and Collapse... 
Must re-tune QCN and increase W
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