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Ethernet Congestion Manager

Davide Bergamasco

Cisco Systems, Inc.

Abstract

This document describes a congestion management mechanism aiming at controlling congestion
in short-range, high-speed Ethernet networks such as Data Center Networks. Such mechanism,
called Ethernet Congestion Manager (ECM), includes three components: (1) congestion detectors
associated with bridge transmission queues, (2) rate limiters associated with NICs transmission
queues to control the traffic injection rate, and (3) a signaling protocol to convey congestion
control information from detectors to rate limiters. When congestion arises in some queue in the
network, congestion control signals are sent from such queue to the NICs originating the flows
causing congestion. Such signals will cause rate limiters to slow down the offending flows to a
rate compatible with the transmission rate from the congested queue, effectively bringing down
the queue depth to a desired level.
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1 Introduction

Data Center networks are a peculiar environment because of their high speed (at least 1 Gbps) and
low latency (a few tens of microseconds of round trip time). In certain cases, such networks may
make use of 802.3X link-level flow control to deliver near-zero packet loss to applications. Such
requirements make congestion management in data center networks quite challenging because:

e High speed coupled with small buffers (required to provide low latency) causes such
buffers to fill up extremely quickly when congestion arises;

e Iflink-level flow-control is being used, congestion spreads over a saturation tree almost
instantly causing severe head of the line blocking, possibly live-lock, or — in the worst of
scenarios — even dead-lock.

Traditional congestion control techniques such as RED [1] and ECN [2] have been shown not to
work well with small buffers because of the extremely compressed dynamics exhibited by such
buffers. In fact, under congestion conditions a buffer in a typical data center network may fill up
in a few hundreds of microseconds, forcing RED and ECN to work in the region of maximum
drop/mark probability. This, in turn, causes the traffic flows to back off too much, and —
consequently — substantial loss of throughput. Also, RED and ECN are layer 3 and 4 congestion
management mechanisms which work only in presence of a cooperating transport protocols such
as TCP. Since in data center network there is a substantial presence of non-TCP traffic RED and
ECN are ineffective at controlling congestion caused by such traffic.

To overcome the above limitations, we propose Ethernet Congestion Manager (ECM), a layer 2
congestion control mechanism conceived to operate in networks limited in scope as per the IEEE
P802.1Qau Project Authorization Request (PAR) [3]. The founding principles of ECM are:

e Pushing congestion from the core of the network towards the edge, where there is less
traffic aggregation and more resources to deal with it more effectively;

e Using rate-limiters at the edge to control the rate of traffic injection for flows causing
congestion;

e Tuning rate-limiter parameters based on continuous feedback coming from the
congestion points.

The rest of this document is organized as follows: section 2 provides an overview of the ECM
mechanism; section 3 describes ECM in detail, particularly section 3.1 discusses the signaling
component and the underlying protocol, section 3.2 addresses the congestion detection
component, and section 3.3 examines the reaction component. Finally, conclusions are presented
in section 4.

2 ECM Overview

Figure 1shows a sample data center network composed of a core switch, a number of edge
switches and some end nodes. End Nodes A and B are simultaneously sending traffic at line rate
(10 Gbps) to end node C. Since the aggregate traffic rate exceeds the capacity of the link
connecting the Core Switch to Edge Switch C, this link is subject to congestion and the queue(s)
associated with it start filling up. The detection component of ECM associated with that queue
samples arriving frames with a certain probability. Based on a configurable threshold that define
the ideal queue depth, if the current queue length exceeds the threshold, ECM signals “slow-
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down” by sending messages destined to end nodes A and B. Such messages are processed at end
nodes A and B. The reaction to a “slow-down” message is the instantiation of a rate limiter (or a
further slow down if one is already instantiated) at the processing point. The purpose of the rate
limiter is to slow down a congesting traffic flow to mitigate congestion at the core switch.

Frames that have been rate limited carry this information with them. ECM continues to monitor
the queue length and, as the congestion begins to abate, signals the nodes which have rate limited
their traffic “speed up”. This is to avoid under-utilizing the bandwidth at the congestion point.

Data Center Network

[T \ e [ End Node C

(] 106
10 Gbps ps -
Edge Sitch A P — = Edge Switth
([T
I

Core Switch

10 Gbps

Ed% Switch B
’ 51 0 Gbps

End Node B

i 1

Figure 1 — Example of a congested Data Center Network and ECM messaging

2.1 Terminology

This section provides the definition of a number of terms that will be used throughout this
document.
o Congestion Management Domain: The contiguous set of Layer 2 devices that support
ECM. In a given Congestion Management Domain (CMD), ECM may be enabled or
disabled on each of the eight IEEE 802.1Q priorities independently.

e Congestion Point. Place where an uncontrolled accumulation of data frames occurs
because of the mismatch in the arrival rate and the departure rate. An example of
congestion point (CP) is one of the output queues of a switch.

e Detection: Component of ECM residing at a CP which detects a congestion condition and
generates “slow-down” (or “speed-up”) signals to bring such condition under control.

e Reaction Point: Place where signals generated by the ECM detection component are
8processed and terminated. Reaction points (RPs) are usually located in Network Interface
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Cards (NICs) and consist of a set of queues and an equal number of rate limiters
associated with them.

e Reaction: Component of ECM residing in an RP which implements congestion mitigation

actions. The reaction component process ECM signals and accordingly control the rate of
injection of traffic by adjusting the current rate of the rate limiters.

e Signaling: Component of ECM used to carry congestion control messages from the CPs to

the RPs.

The next section describes in detail the three components of the ECM mechanism, namely
signaling, detection, and reaction.

3 ECM Components and Operations
3.1 Signaling

Figure 2 shows the exchange of messages between a CP and a RP. As soon as a CP detects
congestion, as described later in section 3.2, it starts sending explicit feedback messages to the
RPs associated with the traffic flows causing such congestion. The feedback message is an
Ethernet frame known as the ECM Frame. A possible format for the ECM Frame is shown in
Figure 3.

An ECM Frame is generated by a CP by sampling incoming frames, as described in section 3.2.
The ECM Frame has Destination Address (DA) equal to the Source Address of the sampled
frame, and a Source Address (SA) equal to a MAC address associated with the CP (usually the
MAC address of the Management Entity of the switch where the CP is located).

Data Frames
S

i | I | | I I R
11 1 11 1
11 1 (| (o] L0 L
Edge Switch +—— Core Switch
(Reaction Point) ECM Frames (Congestion Point)
Data Frames with
CM-Tag
—_—
(i ] [ (— T
11 1 11 1
11 1 (| (| L0 L
3 - N
Edge Switch Core Switch
ECM Frames

Figure 2 —-ECM signaling
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Figure 3 — ECM Frame Format

congestion with a valid source address.

The IEEE 802.10 Tag is copied from the sampled frame. The Priority field of the ECM Frame
802.1Q Tag is set either to the priority of the sampled frame or to a configurable priority. It is
preferable to use the highest priority in order to minimize the latency experienced by ECM

Frames.

The EtherType of the ECM Frame is set to 0xXXXX, identifying the frame as being an ECM

Feedback message.

The Version field indicates the version of the ECM protocol. Currently only version 0 (zero) is
defined. Subsequent versions of the ECM protocol must be backward compatible. If a ECM

31
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implementation version X receives a ECM frame with version Y and Y > X, such an
implementation must use only the fields defined for version X.

The Q bit indicates that the Qdelta field has saturated, i.e., its value is either equal to -2Qeq or

2Qeq. The meaning of such bits will be clarified in section 3.3.1.

The bits in the Reserved fields are currently not used. They must be set to 0 (zero) on transmission
and ignored on reception. Future versions of the BCN protocol may redefine all or some of the

reserved bits.

The CPID field is the Congestion Point [Dentifier and its purpose is to univocally identify a
congested entity — usually a queue — within CMD. This information has to be propagated to the
RP in order to create a bi-univocal association between the CP and RP(s). The CPID field must
be unique across the network but, since it is an opaque object, its format is only relevant to the CP
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that assigns it. The CPID should at least include a MAC address associated with the switch where
the CP resides to ensure global uniqueness, plus a local identifier to ensure local uniqueness.

The Qoff and Qdelta fields contain the actual feedback information conveyed by the Congestion
Point to the Reaction Point. The use of such fields will be described in the next two sections.

The Timestamp and Unit fields are copied from the corresponding fields from CM-Tag (see below
for its definition) of the sampled frame. If the sampled frame does not carry such a tag, the
Timestamp and Unit fields are set to 0 (zero).

The payload of a BCN Frame consists of the first N bytes (where N is a configurable parameter)
of the sampled frame starting from the DA. The minimum value of N is 24, to ensure that a BCN
Frame is at least 64 bytes long. The purpose of such payload is to convey to the RP enough
information to exert the finest congestion mitigation action possible (it should at least include DA,
SA, and 802.1Q Tag).

When a RP receives an ECM Frame from a CP, and such message causes a congestion mitigation
action to be performed on a particular traffic flow (usually the activation of a rate limiter or the
adjustment of an existing one), the CPID field from the ECM Frame is stored in a local register
associated with the corresponding rate limiter. All the frames belonging to that flow subsequently
injected by the RP in the network will carry a Congestion Management Tag (CM-Tag) containing
the CPID from the register (see section 3.3).

Fot—t—t—t—t ottt —t—t—t—t—F -ttt -t -t -t - —+—+
| EtherType = CM-Tag |Version]| Reserved

e s R e B e s E e e
|

+ CPID

|

fot—d—t—t—t—t—t -ttt -ttt —F—t—F—F—F -t —F—t—F—t—F—F—F—t—t—+—+—
| Timestamp |Unit |
Fot—t—t—t—t—t—t -t -t -t —t—F—+—+

|
+
|
+

Figure 4 — Format of the CM-Tag

The CM-Tag is identified by the value 0xXXXX in the EtherType field and it should be located
after the 802.1Q Tag. Its main purpose is to complete the bi-univocal association between a CP
and a RP. The purpose of this association is to prevent a RP from receiving positive feedback
from multiple CPs for the same flow. In fact, a CP is supposed to generate positive ECM
Feedback messages only for frames that carry a CM-Tag with a CPID matching its own ID.

The Version field indicates the version of the ECM protocol. Currently only version 0 (zero) is
defined. Subsequent version of the ECM protocol must be backward compatible. If a ECM
implementation version X receives a ECM frame with version Y and Y > X, such an
implementation must use only the fields defined for version X.

The Timestamp field is used by a RP to estimate the round trip time from the CP it is associated
with. Every time a RP inserts a CM-Tag in the frame it is going to transmit, the current value of a
local free running timer is copied into the Timestamp field. The Unit field indicates the time unit
used by the free running timer according to the following equation:

Time unit=2"".1 pus
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3.2 Detection

Figure 5 shows how the detection process works and how ECM Frames are generated at a
Congestion Point.

Qsc ch Qeq
FULL Qold Qlen EMPTY QUEUE
QUEUE Qdelta | Qoff il
A
i )
Sample
Frame with
Probability P

Compute RLT Present No
Qoff and && CPIDhsh
Qdelta Match?
A
|
|
| Send
! ‘ ECM(Qoff, Qdelta) ‘ NoP
|
|
|
|
777777777777777 e
| |
'Qoff = Qlen-Qeq [-Qeq. +Qeq] |
| |
I
|Qdelta = Qlen-Qold  [-2Qeq, +2Qeq] !
|

Figure 5 - Congestion Detection Process and Message Generation at a Congestion Point

An equilibrium threshold Qeq defines the operating point of a queue under congestion conditions.
In other words, Qeq is the target level around which the queue length should oscillate under
normal congestion conditions. A severe congestion threshold QOsc defines the level at which the
queue is subject to extreme congestion conditions.

Incoming frames are sampled with a certain probability P, e.g., 0.01. Sampling is performed on a
byte arrival basis. That is, if the average frame length is E[L], then a frame is sampled on average
every E[L]/P byte received. If we assume an average frame length of 1000 bytes, then the average
sampling rate is going to be one frame every 100 KB of data received. This can be easily
implemented using a Fixed Interval followed by a Random Interval as shown in Figure 6.

Fixed Interval Random Int.
(90 KB) (20 KB)

Figure 6 — Sampling Process

[

Initially and after every sample, the effective sampling interval S is calculated by adding the two
intervals:

S=Sf+Sr



The length of every frame arriving at the queue is accumulated in L. The frame that makes L >= S
is sampled. A new random interval Sr is picked and L is set to zero. The fixed interval Sf should
be configurable in the range [0, 256] KB with 1 byte increments. The random interval Sr should
be generated in the range [0, 64] KB with 1 byte increments.

When the queue length is zero (0) or it is above the mild congestion threshold Omec, the sampling
probability is increased by a factor Sscale, i.e., S is divided by Sscale’. This is called over-
sampling and it’s purpose is to speedup the response to transient conditions (i.e., queue going full
or empty) by generating more ECM frames when such conditions occur.

When a frame is sampled, the current queue length Qlen is compared with the Osc threshold. If
Qlen is greater than Osc, the queue is under severe congestion conditions, and a special ECM
message, i.e., ECM(0,0), is generated. As discussed later in section 3.3, such message causes a
rate limiter to temporarily drop its rate to zero.

If Qlen is below Osc but above Omc, the ECM message corresponding to the maximum negative
feedback, i.e., ECM(Qeq, 2*Qeq) is generated. This message, also known as ECM-Max will
cause the maximum rate decrement to occur at a rate limiter receiving it. ECM-Max, along with
over-sampling, allows for a faster response to sudden and quick positive changes in the queue
length.

If the queue is not operating under severe or mild congestion conditions, the two components of
the ECM feedback, Qoff'and Qdelta, are computed. As shown in Figure 5, Qoff is the offset of the
current queue length with respect to the equilibrium threshold Qeq. Qoff must be saturated at
+Qeq and —Qeq. Qdelta is the change in length of the queue since the last sampled frame, and it
must be saturated at +2Qeq and -2Qeq. When Qdelta saturates, the Q bit in the ECM Frame is set.
The unit of Qeq, Qoff, and Qdelta is multiples of 64 bytes.

If Qoff is positive, i.e., the queue is above the equilibrium threshold, a ECM message containing
Qoff and Qdelta is generated. If this is not the case, a ECM message has to be generated only if
the CM-Tag of the sampled frame contains an RL option and the CPIDhsh field matches the
CPIDhsh associated with the queue. The rationale behind this is the following: If Qoff is positive,
the queue is above the equilibrium and therefore an ECM message has to be generated anyway. In
the other cases, the queue is either emptying out, or it is filling up but it has not yet reached the
equilibrium threshold. In such cases, an ECM message has to be generated only on those flows
that are currently rate limited and associated with this particular CP. This check is necessary to
reduce as much as possible the generation of “false positive” ECM messages, i.e., positive ECM
messages for non rate-limited flows, or for rate limited flows associated with other CPs.

In certain networks Qeq may be set differently for different CPs. In order to generate ECM
messages carrying a normalized feedback, a scaling factor Oscale is used to multiply the values of
Qoff and Qdelta copied into an ECM frame. In other words, Qoff and Qdelta are calculated as
described above and the actual ECM frame will contain Qscale:Qoff and Oscale-Qdelta’. For
example, a CP with a smaller buffer than other CPs may have a lower Qeq. This will result in a
smaller range for the Qoff and Qdelta values generated by such CP compared with other CPs. To
compensate for that, such CP will use a Oscale value greater than one.

' From the implementation perspective such division can be safely approximated with a shift operation as, most
likely, Sscale is a power of 2.

% From the implementation perspective such multiplications can be safely approximated with shift operations as, most
likely, Oscale is a power of 2.
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When Qoff and Qdelta are both zero, no ECM message is generated. As described earlier, the
message ECM(0,0) has a special meaning.

Every ECM frame generated by a CP will carry in the payload the CM-Tag copied from the
sampled frame. This information is used by the RP as described in the next section.

3.2.1 Congestion Point Pseudo-code

initialize()

{

foreach

{

queue len = 0;

samp_byte acc = 0;
queue_old = 0;

ecm sampling interval = ECM FIXED SAMPLING INT +
*2 - 1));

if

{

// Queue length. Incremented on packet arrival by packet length (in

// pages) and decremented on packet departure.

(ECM_RANDOM_SAMPLING_INT * (urand()

( IncomingFrame = frame arrival() )
( Enable ecm generation &&
IncomingFrame.Ethertype != ECM )

samp byte acc += len( IncomingFrame );

// Sampling process byte arrival accumulator.
// Queue length at previous sample.

// urand(): random number
// uniformly distributed in [0,1)

// Sample only frames subject to ECM

if ( samp byte acc > ( ecm sampling interval >>
((queue_len > ECM_Q MC || queue_len == 0) ? ECM S SCALE : 0 )))

{
/* Frame has been sampled */
need gen ecm frame = 1;

/* Setup next sampling interval */
samp byte acc = 0;

// Assume an ECM frame has to be generated

ecm_sampling interval = ECM_FIXED SAMPLING_ INT +
(ECM_RANDOM_SAMPLING_ INT * (urand() * 2 - 1));

if ( queue len > ECM Q SC )
{
ECMFrame.Qoff = 0;
ECMFrame.Qdelta = 0;
}
else if ( queue len > ECM Q MC )
{
ECMFrame.Qoff = ECM Q EQ;
ECMFrame.Qdelta = 2 * ECM Q EQ;
}
else

{
qoff = queue len - ECM Q EQ;

// ECM(0,0)

// ECM-Max

// Regular ECM Frame

if (goff < -ECM Q EQ) qoff = -ECM Q EQ;

ECMFrame.Qoff = goff * ECM_Q SCALE;

gqdelta = queue len - queue old;
if ( gdelta > 2 * ECM Q EQ )
{

qdelta = 2 * ECM_Q EQ;

if ( ECM_gsat_enable ) ECMFrame.Q

if ( gdelta < -2 * ECM _Q EQ )

qdelta = -2 * ECM _Q EQ;

if ( ECM _gsat_enable ) ECMFrame.Q

}

= 1; // NB: experimental feature,

// enable needed

|
[

ECMFrame.Qdelta = gdelta * ECM_Q SCALE;
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/* Filter out spurious feedback */

if ((goff == 0 && gdelta == 0) || // No rate change
((goff < 0) && // Positive Fb and ..
(thas cmtag(SampledFrame) || // .. no CM-Tag or CPID mismatch
(has_cmtag (SampledFrame) && SampledFrame.CMTag.CPID != CPID))))

{
Need gen ecm frame = 0;
}
}

queue old = queue len;

if ( NeedGenECMFrame )
{
ECMFrame.DA
ECMFrame.SA

IncomingFrame.SA;

SWITCH MAC ADDRESS; // MAC address of the switch generating
// ECM frame

ECMFrame.8021QTag.Priority = HIGH PRI; // May be priority of sampled frame

ECMFrame.CPID = CPID;

ECMFrame.Timestamp = SampledFrame.CMTag.Timestamp;

ECMFrame.Unit = SampledFrame.CMTag.Unit;

forward ( ECMFrame ) ;

}

} // if (samp byte acc >= ECM sampling interval
} // if ( Enable ecm generation ..
} // foreach()

3.3 Reaction

Figure 7 shows the structure of an RP data-path which may be implemented in the egress port of
NIC. A set of filters, F1 through Fn, divert the traffic that matches a particular filtering criterion
(e.g., {VLAN, DA, SA, Priority}, { VLAN, Priority}, {Priority}, etc.) from the regular data path
(“No Match” in the figure) to a set of corresponding queues. Traffic is drained from such queues
by a set of rate limiters, R1 through Rn, whose rate is controlled by the ECM Frames coming
from CP. Note that, in order to avoid out-of-order frames, the “No Match” path must not queue
traffic, i.e., it has absolute priority with respect to the rate-limited paths. Besides controlling the
rate of traffic, the rate limiters also add the CM-Tag to all the transmitted frames in order to elicit
feedback from the CPs they are currently associated with.
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Figure 7 — Data-path structure of a Reaction Point

Every time an ECM frame is received by an RP, the information necessary to identify a traffic
flow (e.g., DA, SA, VLAN, Priority) is extracted from the header of the sampled frame carried
inside the ECM frame. This information is combined in some way (for example using a hash
function) to obtain a compressed flow identifier (FlowID). The FlowlID is compared with the
FlowIDs stored in the currently active filters. If there is no match, this flow is not currently being
rate limited by the RP. A filter/rate-limiter pair is instantiated and the FlowID and CPID received
in the ECM frame are stored in registers associated with this pair. Also, the rate of such rate
limiter is set to a configurable initial rate Ri’.

If there is a match, however, this particular flow is already being rate limited by the RP. The value
of the feedback from the CP is then calculated as described later in this section. If the feedback is
negative, the rate-limiter rate is adjusted as per feedback, and CPID from the ECM frame are
stored with the filter/rate-limiter pair. If the feedback is positive, instead, the rate is adjusted if
and only if the CPID of the ECM frames matches the CPID currently stored with the rate-limiter.
In other words, all ECM frames carrying a negative feedback are honored, while the ECM frames
carrying a positive feedback are processed only if they have been generated by the CP currently
associated with the RP.

Since FlowlID is a compressed flow identifier, multiple flows may be identified the same FlowID
and end up in the same rate-limited queue. Different implementations may choose the degree of
flow aggregation by using a different number of rate-limited queues () and a different hash
function to obtain FlowID.

? Usually a fraction of the link capacity C such as % or Va.
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To ensure that (potentially) positive feedback is generated only by the CP currently associated
with a filter/rate-limiter, the RP adds the CM-Tag to the frames it transmits containing the CPID
currently stored in the rate-limiter register.

An active filter may change its association with a CP over time. As mentioned above, the
association can be changed only when a ECM frame conveying negative feedback is received
from a CP different from the one currently associated with the filter. For example, if a traffic flow
is subject to congestion at CP1 — and, therefore, is rate controlled by CP1 — starts experiencing
congestion at CP2, the latter will generate negative ECM frames for that flow, causing its filter to
change association from CP1 to CP2. After some time, the negative feedback generated by one of
the two Congestion Points will prevail over the other and the filter will settle its association with
the prevailing one.

Every time an RP receives an ECM frame, the Round Trip Time (RTT) between the RP and the
CP (defined as the difference between the current time and the Timestamp field carried by the
ECM Frame) is calculated. The RTT is then filtered through an exponential weighted moving
average (EWMA) as follows:

RTTavg € (1 —2"V™) RTTavg + 2" * RTT

and made available to control software through a read-only register. This measure may be used to
dynamically adjust the value of some of the control loop parameters. The algorithm to carry out
such an adjustment is still being investigated.

At every RP there are only a limited number (7) of rate limiters available. Thus, it may happen
that, at a certain moment, all the rate limiters are in use and an ECM frame arrives that would
cause the instantiation of a new rate limiter. In such a case, a per-priority rate limiter (a.k.a.
coarse rate limiter) gets instantiated, and all the rate limiters (a.k.a. fine rate limiters) currently
associated with such a priority are set to operate at the maximum rate to force a rapid transition to
the per-priority rate-control. When all the queues of the individual rate-limiters are empty, they
may be released.

Once a rate limiter has been instantiated, it may be reclaimed once two conditions are satisfied:
(1) the queue of the rate limiter is empty, and (2) its rate is at or above line-rate. These two
conditions are necessary to avoid out of order packet delivery.

3.3.1 Rate Control Algorithm

The rate control algorithm employed by ECM works according to an Additive Increase
Multiplicative Decrease (AIMD) scheme loosely derived from the one employed by TCP. TCP
increases its rate linearly over time in absence of congestion and halves its rate every time it
receives negative feedback, either explicit (i.e., ECN), or implicit (i.e., packet drop). The
granularity of this AIMD scheme is quite coarse and it has been shown that in many cases it may
lead to link underutilization. In contrast, ECM employs an AIMD scheme with a much finer
granularity. Every time a ECM Frames arrives at a rate limiter, a Feedback signal is calculated
according to the following equation:

Fb= —(Qoff+ w-Qdelta)
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where w is a parameter used to weight the delta component more or less with respect to the offset
component . w should be configurable in the interval [1/8, 8] with 1/8 increments. Based on the
sign of the Feedback signal Fb, the rate is increased or decreased as follows:

o IfFHh>0 R<€ R+ GiFb-Ru
e IfFh<O0 R € R-(1 - Gd'|Fb|)

where Gi and Gd are the Increase Gain and Decrease Gain respectively, and Ru is the Rate Unit
(i.e., the granularity of the rate adjustment) employed by the rate limiters. Ru should be
configurable in the range [1, 100] Mbps with increments of 1 Mbps. Both Gi and Gd are
fractional values. Since their granularity is unknown, they should be represented in fixed point
notation with the largest number of bits possible.

Since Gd and Qeg may be chosen independently, to limit the maximum negative rate adjustment
to a fraction o < 1, the product Gd'|Fb| must be saturated to a. Likewise, since Gi and Qeq may
be independently chosen, the maximum positive rate adjustment should be limited to a certain
fraction § < 1 of the link capacity C*. Therefore the product Gi-Fb-Ru must be saturated to -C.
Given such constrains, the previous equations can be rewritten as:

o IfFHh>0 R € R + min(Gi-Fb-Ru, -C)
o IfFh<O0 R €< R-(1 — min(Gd-|Fb|, a))

Just like Gi7 and Gd, a and £ are fractions and they should be represented in fixed point notation
with as many bits as possible.

Besides the changes driven by feedback from CPs, the current rate of a rate limiter is also subject
to a periodical self-increase. Every time interval 7, (e.g., 1 ms), the rate is increased by a small
amount R, (e.g., | Mbps). Such self-increase is useful for a number of reasons:

1. Speeds up convergence to fairness, as small flows receive substantially larger relative
increments compared with large flows;

2. Allows for the reclamation of stale rate limiters. In fact, a rate limiter may stop receiving
ECM frames because two main reasons: (1) the traffic stream that such rate limiter was
controlling has suddenly ended, and (2) routing issues in the network prevent ECM Frames
from reaching the rate limiter. When this happens, the rate limiter will remain stuck at the
current rate forever. Instead, the self-increase will bring the rate-limiter rate back to line-rate
and will cause its decommissioning;

3. Improves the recovery after a ECM(0,0) message is received (see next subsection).
T, should be programmable in the range [1 ps, 10 ms] with 1 ps increments, while R; should be
programmable in the range [1 Mbps, 100 Mbps] with 1 Mbps increments.
Different (and more complex) self-increase strategies may be employed by a reaction point (see
[7]). The one described in this document has been chosen for its simplicity.

* C is the capacity of the link draining the rate limiter.
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3.3.2 Exceptions and Non-linear Rate Adjustments

When a CP is subject to severe congestion, it may send the special ECM frame ECM(0,0) (i.e., a
ECM message with Qoff =0 and Qdelta = 0). When a rate limiter receives such a message, as
shown in Figure 8, it sets its current rate R to 0 and starts a random timer whose range is
determined by a parameter 7Tmax (e.g., 10 ps). When the timer started by the ECM(0,0) frame
expires, the rate limiter is set to operate at a minimum rate Rmin (e.g., 1/100 of line rate). This
should restart the traffic flow towards the congestion point and trigger — hopefully positive —
feedback. During the random timeout period the automatic self-increase of the rate is suspended,
and it is resumed only after the timer expiration. Also, all ECM messages, including ECM(0,0)
must be ignored during a timeout period.

R
y N
H/
|
S T P SN /
A Random A t
: Time :
ECMO : ECM+

Figure 8 — Example of timeout and random restart

After the timer expiration, 7max is doubled and Rmin is halved, so that the next ECM(0,0) (if
any) will cause the random timer to have a longer duration and the rate limiter to restart from a
slower rate, effectively realizing an exponential back-off. The initial values of Tmax and Rmin are
restored upon the reception of the first positive feedback.

Tmax should be configurable in the range [1us, 1s] with 1us increments, while Rmin should be
configurable in the range [1 Mbps, 1 Gbps] with 1 Mbps increments. The initial values of Tmax
and Rmin are 10 us and 100 Mbps respectively.

The timeout with random restart has been introduced with the goal to mimic two behaviors which
have been proven very successful when dealing with severe congestion caused by multiple traffic
sources:

1. TCP retransmission timeout, which causes the silencing of most of the sources contributing to
congestion, and

2. Ethernet CSMA/CD algorithm, which helps desynchronize traffic sources restarting after a
timeout.

Special handling of ECM messages is also required when the Q is set in the ECM Frame,
signaling that the Qdelta feedback component is saturated at 2Qeq or -2Qeq. When this happens,
a stronger rate adjustment must be performed because the system is working outside of the linear
region. The following rate adjustment is performed based on the sign of Qdelta:
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o If Odelta<0
o If Qdelta> 0

RER+2BC
R € R(I—min(2-a, 1))

In other words, when Qdelta saturates a rate adjustment twice as big as the maximum rate
adjustment in either direction is performed. Since in the case of the decrease 2-a may be larger
than 1, the resulting rate may be negative. To avoid this, the product 2-a is saturated at 1.

3.3.3 Reaction Point Pseudo-code

initialize()
{
RL[*].state = INACTIVE; // * = all rate limiters
RL[*].flowid = -1; // no flow id
RL[*].rate = C;
RL[*].CPID = 0;
RL[*].RTTavg = 0;
RL[*].Rmin = Rmin;
RL[*].Tmax = Tmax;
}
processECMFrame ( ECMFrame )
{
FlowId = some hash( ECMFrame.Payload ); // ECM frame payload contains the header of
// sampled frame
rlidx = getRatelLimiterIndx( FlowID ); // Returns the index of the RL associated with
// FlowID, or the index of the next available
// RL if no FlowID match. Note that FlowID may
// be used directly as the index in the RL table
if ( ( ECMFrame.Qoff == 0 && ECMFrame.Qdelta == ) && // ECM(0,0)
RL([rlidx].state != TIMEOUT )
{
RL[rlidx].state = TIMEOUT;
RL[rlidx].rate = 0;
RL[rlidx].CPID = ECMFrame.CPID;
Tmax_ timer set( rlidx, RL[rlidx].Tmax * urand() );
}
else
{
Fb = - (ECMFrame.Qoff + W * ECMFrame.Qdelta);
if ( Fb < 0 )
{
if (RL[rlidx].state = INACTIVE )
{
RL[rlidx].state = ACTIVE;
RL[rlidx].flowid = FlowId;
RL[rlidx].rate = Ri;
RL[rlidx].CPID = ECMFrame.CPID;
RL([rlidx].RTTavg = 0;
}
else
{
RL[rlidx].rate *= 1 - ( ECMFrame.Q == 1 ? min(2-«, 1) : min(-Fb-Gd, «) ) :
if ( RL[rlidx].rate == 0 ) RL[rlidx].rate = RL[rlidx].Rmin; // Saturate to Rmin
if ( RL[rlidx].CPID == ECMFrame.CPID )

{

RL[rlidx].RTTavg = calc_movavg( RL[rlidx].RTTavg,

// old value
// new value
// weight

(now () - ECMFrame.Timestamp),
2 "~ -Wrtt );
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}

else

{

RL[rlidx].CPID = ECMFrame.CPID;
RL([rlidx].RTTavg = 0;

}
}

else if ( RL[rlidx].CPID == ECMFrame.CPID &&
RL[rlidx].state == ACTIVE )
{
RL[rlidx].rate += ECMFrame.Q == 1 ? 2:f:C : min(Gi-Fb-Ru, B-C);
RL[rlidx].Rmin = Rmin;
RL[rlidx].Tmax = Tmax;
RL[rlidx].RTTavg = calc_movavg( RL[rlidx].RTTavg,

}

/* Timers */

(now () - ECMFrame.Timestamp),
2 "~ -Wrtt );

foreach ( rlidx = Tmax_timeout () )

{
RL[rlidx].state
RL([rlidx].rate =

= ACTIVE;
RL[rlidx].Rmin;

RL([rlidx].Rmin /= 2;
RL[rlidx].Tmax *= 2;

foreach ( Td_timeout() )

{

if ( RL[*].state == ACTIVE )

{

// * = all Rate Limiters

RL[*].rate += Rd;
if ( RL[*].rate > C ) RL[*].rate = C; // saturate @ C

}

Td_timer set( Td );

/* Frame departure from RL queue */

foreach ( rldix = frame departure from rl() )

{

insertCMTag ( OutgoingFrame ) ;
OutgoingFrame.CMTag.CPID = RL[rlidx].CPID;
OutgoingFrame.CMTag.Timestamp = now () ;

if ( RL[rlidx].queue len == 0 && RL[rlidx].rate == C )

{

RL[rlidx].state = INACTIVE;
RL[rlidx].flowid = -1;

4 Conclusions

This document describes ECM, a backward notification-based mechanism for congestion

management in data center networks. Such networks are peculiar because of their high speed, low
latency, and, in certain cases, zero traffic loss. In such environments traditional congestion
management mechanism such as RED [1] and ECN [2] have been shown not to work particularly

well.

// old value
// new value
// weight
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Simulation evidence [4] [5] shows that ECM works substantially better than the above mentioned
alternatives, especially in data center networks where TCP and non-TCP traffic share the same
infrastructure. This is because traditional congestion management schemes work only when the
vast majority of traffic is TCP, i.e., they assume a congestion-responsive transport layer. Since
ECM does not make any assumption on the transport layer, it can deal even with non-responsive
protocols.

ECM has also been studied from the analytical standpoint using techniques commonly used in
Control Theory. It has been analytically shown that the ECM control loop is stable in a wide
region as determined by its parameters [6].

ECM has been originally presented to 8§02.1 in May 2005 for review and to gather feedback from
the standards community” [4][5][6]. A Project Authorization Request (PAR) [1], along with a
tutorial on ECM, was presented to the IEEE 802 Plenary in July 2006. The PAR was approved
and a Task Force named 802.1Qau has been formed with the charter to develop a congestion
management framework for Ethernet. ECM is currently one of the proposals being considered by
the task force for such framework.
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6 Glossary

The following list describes acronyms and definitions for terms used throughout this document:
AIMD: Additive Increase Multiplicative Decrease

> At that time, ECM was known as BCN, or Backward Congestion Notification. The name has been recently changed
into ECM to avoid confusion with the generic concept of sending congestion notifications in the opposite direction of
the traffic causing congestion.
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AQM: Active Queue Management
CMD: Congestion Management Domain
CM-Tag: Congestion Management Tag
CP: Congestion Point

CPID: Congestion Point IDentifier
CSMA/CD: Carries Sense Multiple Access with Collision Detection
DA: Destination Address

ECM: Ethernet Congestion Management
ECN: Explicit Congestion Notification
FlowID: Flow Identifier

NIC: Network Interface Card

RED: Random Early Detection

RL: Rate Limiter

RL Option: Rate Limited Option

RP: Reaction Point

RTT: Round Trip Time

SA: Source Address

TCP: Transmission Control Protocol
VLAN: Virtual Local Area Network



