QCN: Quantized Congestion Notification

Rong Pan, Balaji Prabhakar, Ashvin Laxmikantha

IEEE <u>802.1@Geneva</u>

May 29, 2007

Overview

- Functional description of the QCN
 - Pseudo-code available with Rong Pan: ropan@cisco.com
- Basic simulations
 - Infinitely long-lived flows: stability of control loop
 - Dynamic flows: FCT
 - Baseline Simulations

• Reaction Point:

- Multiplicative decrease based on the value of Fb (same as BCN)
- In the absence of negative signals, perform self-clocked fast recovery and active probing
- Congestion Point:
 - Compute Fb
 - If Fb < 0, reflect Fb back to the sources with probability depending on IFbI
 - For 3-point architecture, set the "frame-reflected" bit (or the DE bit)
- Reflection Point:
 - For 2-point architecture, do nothing
 - For 3-point architecture: if a packet has not already been reflected, send Fb=0 signals back to reaction point with a fixed probability (e.g. 1%)

Reaction Point: Fast Recovery and Active Probing

Self clocking: under congestion, a negative signal should be received after roughly 100 packets (because minimum sampling probability equals 1%); If no negative signal, then there is likely extra capacity, ok to increase 4

Reaction Point: Fast Recovery and Active Probing

• Fast Recovery: Intuition

- Amount of increase following a rate decrease is proportional to the amount of decrease; by recovering less than it was dinged, the source ensures stable behavior
- By doing binary search for the next rate, we get fast convergence time
- Active Probing: Intuition
 - Make small rate increases frequently to probe for the extra bandwidth

Congestion Point

- At the CP
 - Compute: $Fb = [q_{off} + w q_{delta}]$
 - Reflect
 - If Fb < 0, then reflect Fb value probabilistically back to the source with a bias which increases with Fb
 - Set the "frame-reflected" bit / DE bit

Reflection Point

- The end reflection point (in the 3-point architecture)
 - If the incoming frame has the "frame-reflected" bit set, do nothing
 - Else Fb=0; reflect this back to source with some small probability, say 1%

Basic Simulations

Outline

- 1. Infinitely long-lived flows
 - Simultaneous starts
 - Staggered starts
- 2. Dynamic heavy-tailed flows
 - Flow completion times for long flows, short flows
 - Losses
- 3. Baseline simulation, scenario #1

Parameters and settings

- Infinitely long-lived flows: simultaneous starts
 - Single link, 6 flows on at 10 Gbps at time 0
 - Link delay (RTT): 40 microseconds
 - Gd = 1/128
 - w = 2
 - Ri = 12 Mbps
 - Sampling function = linearly increases with IFbI from 1--10%
- BCN parameters
 - Gd = 1/128
 - Gi = 2.0
 - w = 2.0
 - Sampling Probability = 1%
- Staggered starts: staggered starts
 - Single link, 6 flows on 500 microseconds apart
 - Same parameters as above

Queue Length - Simultaneous, 2-point architecture

Fairness - Simultaneous, 2-point architecture

12

Throughput - Simultaneous, 2-point architecture

Sum Rate, Number of Flows: N = 6

Number of drops vs. Buffer size for 6 flows starting simultaneously

Queue Length - Staggered, 2-point Architecture

Link throughput - Staggered, 2-point architecture

16

Dynamic flows: FCT and Drops

- Workload
 - IPC traffic: Mean = 5 KB (uniform distribution)
 - Data traffic: Pareto, shape 2, mean 100 KB
 - Parameters (Gd, w, etc): same as before
 - Reflection probability = 0, 2.5 and 5%

Completion Time of Short Flows BCN sampling probability = 1%

Completion Time of Long Flows BCN sampling probability = 1%

C=10Gbps, IPC traffic mean =5KB (Uniform), Data traffic = 100KB (Pareto: Shape 2.0), Delay = 40 mus

Drops BCN sampling probability = 1%

C=10Gbps, IPC traffic mean =5KB (Uniform), Data traffic = 100KB (Pareto: Shape 2.0), Delay = 40 mus

Completion Time of Short Flows 3% sampling probability with BCN

Completion Time of Long Flows - compared with 3% sampling probability with BCN

Drops 3% sampling probability with BCN

Baseline Setup

http://www.ieee802.org/1/files/public/docs2007/au-sim-wadekar-reqd-extended-sim-list020107.pdf

Baseline Setup - Hot Spot Throughput

Base Line scenario: 10 sources, CBR traffic load = 0.85, RTT=9mus, Qeq=22

Baseline Setup - System Throughput

Baseline Setup

Summary

- The main features of QCN are
 - Quantization of feedback removes the need for hardware-based computations; therefore, it is easily reconfigurable
 - 2-point architecture makes it easy to deploy incrementally
 - 3-point architecture involves only 1 bit in the header, which is very simple, yet enables really good performance both in terms of drops and underflows
- Further work
 - More extensive simulations, more general topologies
 - Decide crucial aspects: e.g. to use probe packets or use packet headers
 - Explore connections with other proposals
 - Your continued feedback would be appreciated!