Notes on FCT, Slowdown, Heavy Tail
Distributions

Balaji Prabhakar
Stanford University

Overview

* Infinitely long-lived flows vs dynamically arriving flows
— Unit step response: pick parameters for control-theoretic stability
— Flow completion time (FCT): what the users care about

- Heavy-tailed flow size distributions
— Pareto distribution
— Mice and elephants
— Scheduling algorithms for exploiting them

Unit step response vs FCT

- Historically, congestion control research has considered the performance
of a scheme under infinitely long-lived flows

This gives the unit step response of the scheme

Very useful for control-theoretic analysis and hence for picking the parameters for the
stability of the control loop

But, it does not capture dynamic situation of flows arriving and departing (which is the
actual situation)

It does not have a notion of “load” which can be increased,; it is always at 100% load
It does not capture flow completion time (FCT), a quantity users care about

- The recent literature takes a 2-step approach

First study scheme under infinitely long-lived flows
After picking parameters and ensuring stability of control loop, consider FCT

This is consistent with CPU performance under “workloads” consisting of files and
brings the role of algorithms into focus

Key metric: In addition to FCT, it is “Slowdown”
Slowdown for job or flow of size x = FCT of flow / x = 1/ Bdwdth given to the flow

Heavy tailed Distributions

e Let X > | be a random variable which denotes job/file sizes

-let BE(X) = [{" P(X >t)dt < ocand E(X?) =
-eg fort 2 1, P(X > t) =1 or density fy(t)=at !
if a € (1,2), then EX < oc but B(X?) = ¢
— for a as above, this is the Pareto distibution and « is called the
shape parameter
e Some properties of the distribution
1. decreasing failure rate; failure rate FR(t) = % =d—=2

note: P(X >t+s|X >t = (ti) increases with ¢

2. heavy tails: e.g. if @ = 1.1, then the largest 1% of the jobs constitute 50% of the load

e Heavy tails are prevalent

- CPU process life-time distributions
- Web file sizes

- FTP file transfers, etc

EE 384 M Newwork Algorithms 2

Scheduling algorithms

« With FCT, the role of scheduling algorithms come into play

« For simplicity, let us assume a single server queue first
— This corresponds to flows passing through a single link
— We can do the network case, where there are multiple links, later

« Scheduling algorithms can be divided into categories
— Job-size based or not
— Pre-emptive or not

Not job-size based | Job-size based

Not pre-emptive FIFO SJF

Processor Sharing

(PS) SRPT

Pre-emptive

Scheduling algorithms: General

conclusions

In terms of FCT and Slowdown, FIFO is v.bad for heavy tail distributions

— FIFO not relevant in networking because all congestion control schemes transmit
packets simultaneously from different files, FIFO is not provided by network

— Included as a useful benchmark

SRPT is optimal but basically unimplementable
— Don’t know how many packets remain to be transmitted

Processor Sharing (PS)

— Has constant slowdown; i.e. it gives equal bandwidth to all flows, regardless of their size

— But, this can be very bad when compared to a job-size based scheme which gives more
bandwidth to short jobs

This is because

— The small (mice) flows do not really contribute to congestion and they are not easy to
detect; so just let them through quickly

— Large (elephant) flows cause congestion and need to be controlled

— Under HT distribution, there are many mice and a few elephants, so helping mice
dramatically reduces overall FCT

In the Data Center

« Not yet clear what the flow size distribution going to be

However, there will like be inter-process communication (IPC) traffic: short, delay-sensitive. Treat
these as mice and get them transferred quickly

There will also likely be large disk transfers. These will need to be congestion controlled. Think of
these as the elephants

Bottomline: Control the elephants, get the mice out asap

- So favoring the mice by giving them more bandwidth (or reducing their slowdown)

Benefits performance by reducing FCT

Makes for easier implementation: We only need per-elephant rate limiters, as opposed to per-flow
rate limiters

 |n terms of actual simulation studies re the above

We have already seen Davide’s presentation on FCT
We have also seem Mitch and Cyriel’s sims
On our side, we have simulated QCN and will be presenting that shortly

Some work was done at Stanford in 2004 on an algorithm called SIFT which detected and favored
the packets of short flows at Internet routers; it showed how there can be a huge improvement in
FCT for all flows, not just the mice; please email me if you’re interested in that paper

