

Addressing Concerns with Closed Loop Congestion Management Protocols

Guenter Roeck, Teak Technologies

IEEE 802.1Qau Stockholm Interim Meeting, September 2007

1

- Several concerns have been raised against the use of a Closed Loop CM protocol
- List all concerns about Closed Loop CM protocols in a single place
- For each concern,
 - Determine if it is a real problem
 - Propose solutions if necessary

- Open Loop Protocols
 - CP->RP communication
 - Negative feedback only
 - Example
 - QCN
- Closed Loop Protocols
 - CP->RP communication for negative feedback
 - RP->CP/RfP->RP communication for positive feedback
 - Examples
 - Path probing
 - FECN, E2CM, (ECM-SP, QCN-SP, QCN-PP)
 - CP probing
 - (ECM-P, QCN-P)
 - Tagging
 - ECM

- Open Loop Protocols
 - Simplicity
- Closed Loop Protocols
 - More accurate control loop

Concerns with Closed Loop Protocols

CP probes

- Wrong RP<->CP association may cause RP to be stuck in low data rates
- Network re-configuration may cause RP to be stuck with CP which is no longer associated with rate limited flow(s)

Path probes

- Multi-path environment
 - May cause instability due to probes taking wrong path
- Shared rate limiters have no well defined path
 - May cause instability

All probe based protocols

Protocol packets sent directly to CP/switch

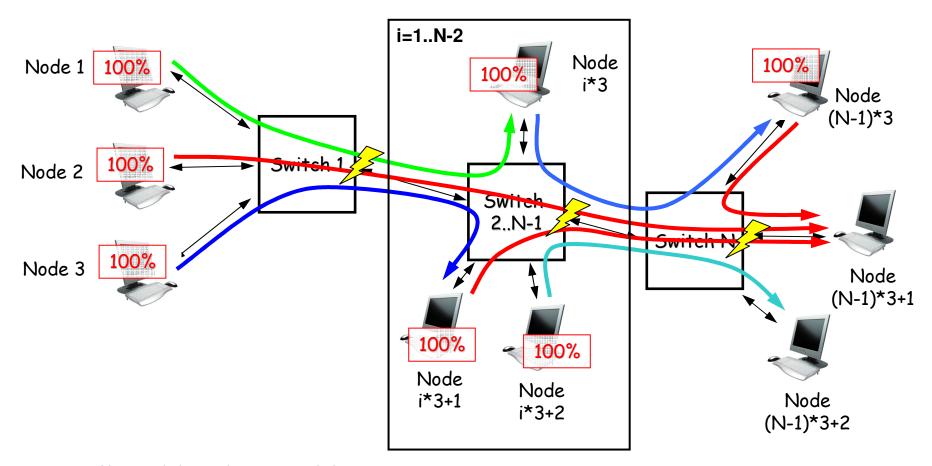
CPID

- CPID association with shared rate limiters or in multipathscenarios causing false feedback
- CPID Thrashing
- CP loses anonymity due to existence of CPID

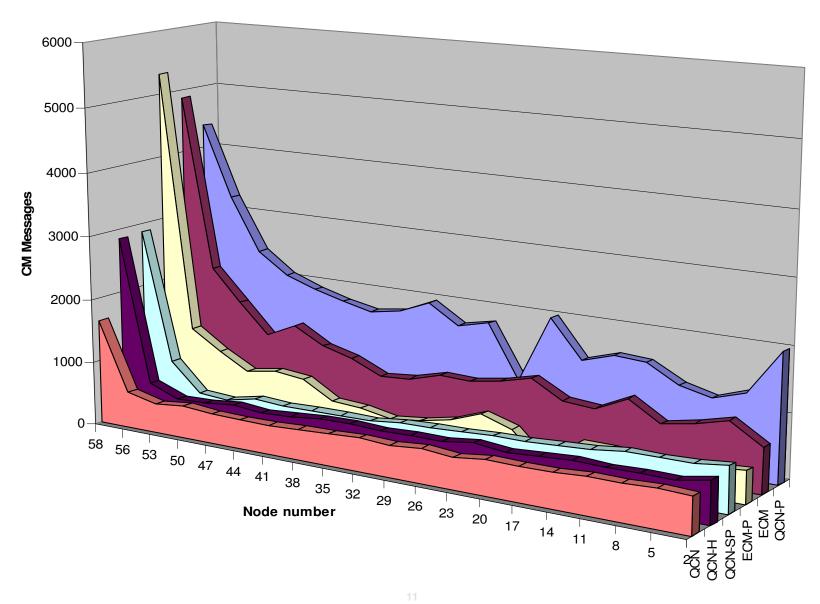
All

- Security: Fake probe messages
- Increased complexity
- Protocol might have impact on or require modifications of other L2 protocols

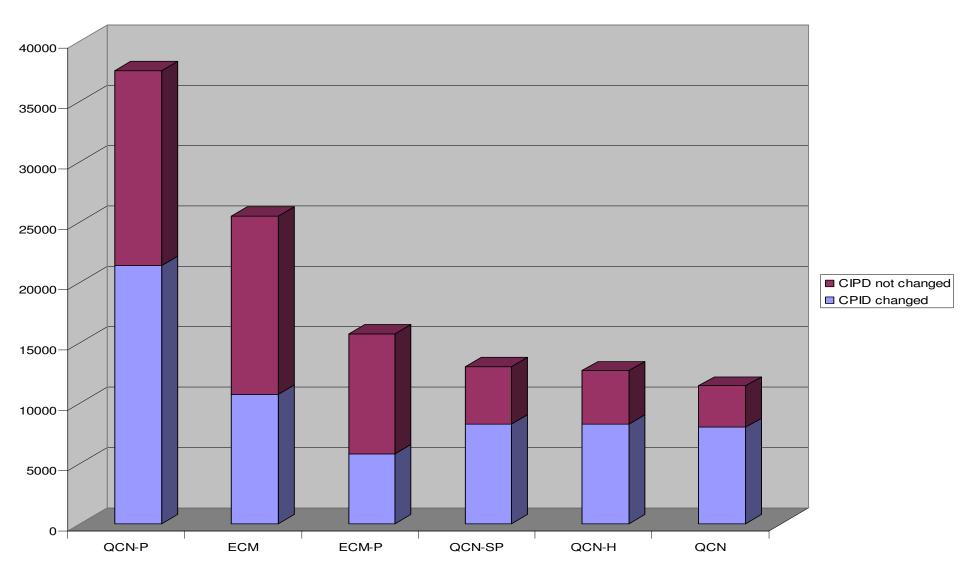
- RP stuck with low data rate
 - Use aggressive self-increase or a timeout if there is no positive feedback
 - Example: QCN-style self-increase
- Network re-configuration may cause RP to be stuck with CP which is no longer associated with rate limited flow(s)
 - Change CPID association whenever negative feedback is received
 - Use aggressive self-increase if there is no positive feedback


- Probes taking wrong path
 - Problem does not apply to directed probes
 - Sub-path probes always provide as good or better results than directed probes, thus the problem does not apply to sub-path probes either
 - Use either directed or sub-path probes
- No well defined path for shared rate limiters
 - No real difference to open loop protocol behavior
 - Constantly changing CPID will ensure that lowest throughput CP will dominate
- Protocol packets addressed to CP/switch
 - Is this really a problem ?

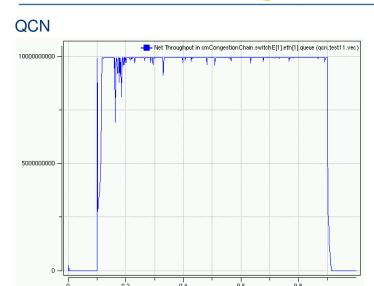
Addressing concerns: CPID Thrashing

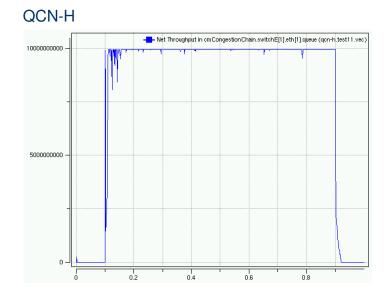


- N=18 switches; 3 hosts per switch
- Node <i> sends to node <i+3>; Node <i+1> sends to node (N-1)*3+1; node <i+2> sends to node <i+4>
- 100% load from all nodes
- Node (N-1)*3+1 receives traffic from <N> sources
- N hotspots

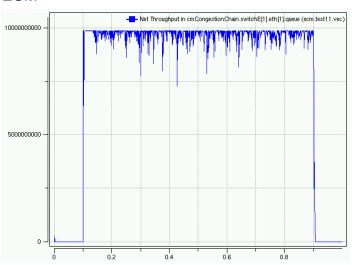


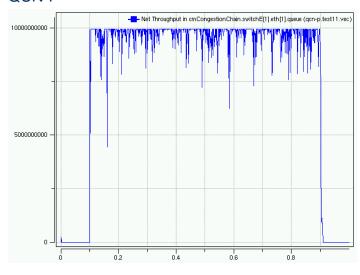
CM Packets Received by Nodes 2,5,8,...



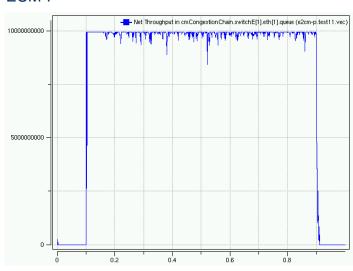


Throughput at Switch N CP: Open-Loop Protocols





Throughput at Switch N CP: Closed-Loop Protocols


ECM

QCN-P

ECM-P

QCN-SP

- In multi-hotspot scenarios, every protocol changes its CP association all the time
 - ... even if such an association is not explicitly defined (QCN)
- No evidence that CPID Thrashing could be a problem
- Protocol stability depends on changing CPID association in multi-path and multi-hotspot operation

- Wrong CPID association with shared rate limiters or in multipath scenarios
 - Update CPID association whenever a negative feedback message is received
 - If rate gets too high, another CP with higher congestion will take over
 - CP with lowest rate (highest level of congestion) will dominate
 - Similar to open loop protocols
 - If this is insufficient,
 - Do not use probes if rate limiters are shared
 - Use directed or sub-path probes instead of path probes
 - Need to verify in simulation

Fake probe messages

- Answer 1: Security is not commonly addressed in 802.1 protocols. Furthermore, every CM protocol has this problem. Why is it a concern here?
- Answer 2: What can happen ?
 - Fake probes sent to CP
 - CP only replies if feedback is positive
 - Worst case, the "offender", i.e., the host referenced in fake probes, would get more bandwidth
 - Impact similar to the host simply increasing its rate or not caring about negative adjustment requests
 - Fake probes sent to RP
 - RP will reduce its data rate
 - > Same impact for all protocols, independent of probe mechanism

- Increased complexity
 - RP: Needs to send probes (or tags) and evaluate results
 - CP: Detect and evaluate probes/tags
- Looking into the code, this seems to be a minor issue
 - Most of the code to generate CM packets is already there anyway
 - Arguable, since simulation code and implementation may only be loosely coupled
- According to HW engineers, added complexity is not really a problem as long as probes/tags have a well defined (static) packet format
 - More concerned with complex calculations

- Loss of CP anonymity
 - Not really a problem
 - CP is not anonymous anyway
 - Always sends its MAC address with each CM message
 - Customers like the idea of knowing where they may have a problem in the network
 - Knowing where the problem is seems to have higher value than trying to automatically fix it

- Protocol might have impact on or require modifications of other L2 protocols
 - This is a generic argument which can be used against any protocol
 - Does not have much practical value without substantiation
 - Can be addressed by stating that protocol must be independent of other protocols

CP switch disappeared

- No probe replies; RL auto-increases data rate until full rate recovered, or until negative adjustment request received from another CP
 - No worse than QCN
- Path probes take wrong path
 - Use Sub-path or CP directed probes
 - No positive feedback if protocol designed correctly
 - ➤ No worse than QCN
- Data path changed
 - Only positive feedback received from CP
 - RL increases data rate until full rate recovered, or until negative rate adjustment request received from another CP
 - Better than QCN

Problem	Solution
Wrong CP-RP Association	✓
RP stuck in low rate	✓
Instability due to probes taking wrong path	✓
No well defined path with shared rate limiters	✓
Probes sent directly to switch/CP	?
CPID Thrashing	-
Loss of anonymity	-
Fake probe messages	- (√)
Increased complexity	- (?)

- Even in worst case scenarios, directed or sub-path probes do not have a negative impact on protocol performance
- Significant performance gains in all other scenarios
- Improved performance outweighs increased complexity
- Protocol elegance and simplicity should not outweigh performance
- Good performance requires a closed loop protocol
 - Closed Loop protocol implies use of CPID to identify CP

Thank you

Questions?

Backup slides

Probe algorithm overview and assumptions

- Probes sent to solicit positive feedback only
 - CP does not reply if feedback would be negative
 - Options
 - Directed probes
 - Probes sent to CP associated with RL
 - Sub-path probes
 - Probes sent to flow destination address, and reflected by "last" CP supporting switch in path
 - In-path CP removes probe from network if it is congested (Fb would be negative)
- RL associated with CP from which the most recent negative adjustment request was received
 - RP<->CP association will change each time a negative adjustment request is received from a different CP (for a given RL)
- RP<->CP association per RL queue
 - Deleted when a queue/RL is deleted
- RP<->CP context (per RL queue)
 - CPID
 - CP MAC address