On Flow Completion Time Benchmarking in Datacenters

M. Gusat, C. Minkenberg and R. Luijten IBM Zurich Research Lab May 2007

- Motivation
 - > Desire for Bursty Benchmark for Ethernet CM evaluation
- Traffic generator
 - > Bursty source w/ heavy-tailed (Pareto) distributions
- Metric: Flow Completion Time (FCT)
 - Definitions and methodology
- Topology
 - > MINs
- Putting it all together
- Proposal for Bursty Benchmark
- Conclusions

Motivation

- I) Since Monterey Jan. '07 request for new metric, scenario and traffic
 - 1. Redo all sim runs without PAUSE (PAUSE=off)
 - 2. New metric: Flow Completion Time (FCT)
 - 1. As proxy for application-level latency
 - 3. More 'realistic' traffic: Bursty sources, heavy-tailed distribs (Pareto)
 - 4. More 'realistic' topos
- II) We need a consistent approach across all adhoc sim teams
 - Example plot: "Proposal A" (optimized) vs. "Others (B,C,D)" (basic versions)

Elements of a Benchmark

- 1. Work
- **2. Job**
- 3. Flow
- 4. Burst
- 5. Packet (Ethernet Frame)
 - > Each has 2 random variables (Size and Interarrival), for which we must choose a distribution.
 - agree on parameter values
 - exponential or Pareto

Comparison of Exponential vs. Pareto Distributions

Exponential

1) Memoryless: probability of Bsize > *b* is the <u>same</u> regardless of how long the burst already is:

P(X > a+b | X > a) = P(X > b)

2) Mean and variance are finite (and simple):

$$E(X) = \frac{1}{\lambda}, resp. V(X) = \frac{1}{\lambda^2}$$

Pareto:

- 1. Mean and Variance unbounded
- 2. Heavy tail (α =1):
 - 1. For any burst length, the chance that it will double in size is 50%.
 - 2. Ca. 1% of the flows carry 50% of the volume (Bytes)
 - 3. For $\alpha \ge 1$ the expected burst size is bounded.
- 3. Central Limit Theorem does not apply
- 4. For $1 < \alpha < 2$, despite bounded expected value, still

$$E(X) = ?, resp. V(X) = \infty$$

Effect of Pareto Shape on Burstiness (generated w/ same seed)

Elements of a Benchmark, Continued

- work
- job
- flow
- burst
- packet
- each has 2 random variables, for which we must choose a distribution.
 - > agree on parameter values
 - > exponential or Pareto
- If we choose Pareto for one or more of {flow, burst or packet} we reduce the use of analytical tools, with neither proof nor a clear benefit
 - > A) No evidence of Pareto distribution for datacenter traffic
 - > B) Will the original L4 distribution remain the same at injection time (at L2)?
- We need to define a for one or more of {flow, burst or packet} distributions, but no guidelines exist for useful values of a in datacenters

FCT was recently proposed by Stanford Univ. for CM [refs]

- "FCT is an important arguably the most important performance metric for the user" [N. Dukkipati, N. McKeown "Why Flow-Completion Time is the Right metric for Congestion Control and why this means we need new algorithms"]
- FCT is being de-facto adopted also in .1au simulation results from Stanford, Cisco and ZRL
- > Characterizes CM performance from an User's perspective
- FCT: intriguing, yet difficult metric... It elicits precise
 - 1. Flow definition
 - 2. Completion definition
 - 3. Benchmarking measurement method

...none of which trivial !

You get what you measure...

I) Assuming precise definition of "flow", measuring FCT results with PAUSE=On is un-ambiguous according to Case #1

- II) However, with PAUSE = Off, FCT also requires definition of "completion"
 - > flows entirely received w/o any loss
 - > flows entirely received w/ some loss
 - Flows partially received
 - > flows not arrived yet at destination...
- How do we count for these?
- Traffic-driven
 - > to get good Tput, just drop all small flows (mice)
 - > to get good latency, just drop all large flows (elephants)
- We need an agreed upon FCT approach to fully capture the relevant statistics

Difficulty of the FCT Metric

- Components of $FCT = \Sigma (t_{queue,i} + t_{inject,i} + t_{flight,i} + t_{RTX})$, for i = SRC to DST
- Q: Can these (complex) components be characterized by a single L_{e2e} variable?
- A: Depends on their distributions.
- Except $t_{flight,i}$ all other t's are independent random variables
 - > if one or more of their PDFs are from Pareto distributions, the sum can NOT be represented by a single random variable L_{e2e} with the same expected value, mean and variance.

$$FCT = \Sigma (t_{queue,i} + t_{inject,i} + t_{flight,i} + t_{RTX}) \neq L_{e2e}(X), i.e. \ CLT \ doesn't \ apply.$$

→ Each term of the sum above (except t_{flight}) must be independently analysed and reported. A global FCT is not meaningful w/o a detailed breakdown.

Case #1: Lossless ICTN FCT Measurement

Iff

- workload defined as in our Bursty Benchmark
 "Trace File" proposal, and,
- 2. PAUSE is enabled
- \Rightarrow <u>Measurement method</u>:
- 1. Conduct N no. runs for 95% confid. interv.
- 2. Collect flow stats in K=8 histogram bins
 - 1. Collect aggregate Job and Work stats
 - 2. Work Completion Time (WCT): Full drain.
- 3. Display on log axes (see ex. plot)
 - 1. FCT
 - 2. Tput_i
 - 3. Power_i = Tput_i / FCT_i
- 4. Repeat (1-3) for different loads / HSV
 - 1. Optional, 3D surfaces of 3.1..3
- 5. Calculate mean aggregate Tput
 - 1. per Workload = WKLD_Size [B] / WCT
 - 2. per burst size Tput_{size} = Σ Tput_i / K

Case #2: Lossy ICTN FCT Measurement

1. For PAUSE = Off (assuming some RTX method in place)

- we must qualify "completion" and distinctly count the Bytes per flows:
- 2. Fully Completed w/o loss => Good-put
- 3. Fully Completed with loss => Part-put
- 4. Partially Completed
- 5. Dropped

=> Drop-put

=> Part-put

- 2. Goodput: Perform steps 1-5 as in Case #1
- 3. Report Drop- and Part-put

Topology: From Single-Stage thru Sparse MINs to Fat-trees

- From single stage and dumbbells (unidim. topo graphs) to 2D nets: a step up in realism (and complexity)
 - > sim runtimes grow (super/sub)-linear: see ZRLs plots in [ref]

Putting It All Together: CM Benchmarking Sphere

Putting It All Together: CM Benchmarking Sphere

- Our benchmarking proposal
 - > Method for reproducible results
 - Furthers the approach proposed in Orlando by <u>Cisco</u>
- Traffic Gen. code jointly developed w/ Cisco and Broadcom
 - preliminary results from Cisco and ZRL
- Next steps

٠

٠

- discuss and improve Bursty Benchmark r1.0
- > adopt it
- \succ discuss the CM BMRK Sphere \rightarrow

we kept the topology simpler than the known DC reality, while speculatively exploring along the the other 2 axes.

- Fixed pkt size = 1.5KB MTU
 - > generate a fixed size "Trace File" => WSize as system workload
- Trace format

| (1) Time | (2) SRC | (3) DST | (4) Prio | (5) BSize |

- For testing the Traffic Generator necessary to generate the above trace
 - Install and link the following distribution functions from Gnu Scientific Library (<u>GSL</u>):
 - 1. gsl_ran_exponential (const gsl_rng * r, double mu)
 - 2. gsl_ran_pareto (const gsl_rng * r, double a, double b)
 - > use Pareto 1 < a < 2 and scale b = 1.0</p>
- Benefit of GSL: The IEEE environment settings (FP precision, rounding/truncation, ordering) are automatically taken care of...!
 - > results are consistent across a wide range of machines, CPUs and OSes

ACKs: Contributions from D. Bergamasco and B. Kwan.

- Bursty Benchmark traffic generator and trace files will be available
 - > use exponential first, possibly extended by bounded Pareto distribs
 - > initially we recommend the trace file to calibrate our baseline sims
- FCT is an intriguing, yet time-intensive new metric
 - > recently proposed in CM
 - > can characterize performance from User's point of view
- However, in DC environments it can be confusing, even misleading...
 - requires large investment for little practical value
- Suggestions to .1au
 - 1. Adopt the Bursty Benchmark to achieve consistent and reproducible results
 - 2. Use the established metrics (Qlenght, Tput, fairness)
 - 3. Focus on real topologies instead of unproven metrics