

CN-SIM: Discussion About Metrics

Davide Bergamasco

IEEE 802 Plenary Meeting Orlando, FL March 13th, 2007

Agenda

- Clarifications on previous presentation
- Classification of metrics
- Acceptance criteria

Introduction

- At the last Interim Meeting in Monterey we agreed to gather the following metrics in our simulations (see <u>au-thaler-CN-metrics-070124.pdf</u>):
 - Queue depth (Max, Avg, StdDev)
 - Time above highly congested point (TBD, time above Qsc, n * equilibrium point)
 - Packets dropped in network
 - % time paused
 - Aggregate throughput for congested flows
 - Aggregate throughput for innocent flows
 - Signaling overhead
 - Fairness
 - Completion time for innocent flows
 - Completion time for congested flows
 - Convergence time
 - Reaction to short flows, flow length boundaries for benefit, flow
 - length boundaries that cause harm?

Flow Completion Time

- Definition of Flow:
 - Ordered sequence of frames originated by a strice node and addressed to a destination node
- Definition of Flow Completion Time (F)
 - Ideal: Difference between the arrive till to the ast BIT and the departure time of the first BIT.
 - Approximate: Difference of the last FRAME and the departure time
 AME of a flow
- The FCT can be computed and the frames of flow are received by the destination in S
- When Provide used, frames may be dropped, effectively compron
 and FCT computation
- Proposal
 - Compute FCT only for uncompromised flows ("good flows")
 - Count number of compromised flows ("bad flows")

Flow Completion Time

- When PAUSE is used, frames cannot be dropped.
 Hence FTC can be computed for all flows
- However, FCT may be compromised because of blocking inside NICs

Flow Completion Time

Proposal

- For external flow control (i.e., PAUSE trice ed), nothing can be done, so just live with it
- For internal flow control, block and the mapped to a RL whose queue exceeds a certain are add (i.e., selective flow control)
- This complicates the product iterative because multiple traffic generator (a) a putil readed" traffic generator) are required with a menode

Convergence Time

- In Monterey, Bruce Kwan presented some very good material regarding the estimation of transient duration (<u>au-sim-kwan-transient-duration-012407.pdf</u>)
- The "Initial Data Deletion" methodology was used to determine when the initial transient was over
- Although extremely accurate, such methodology is quite labor-intensive and time-consuming
- Proposal
 - Use a far less accurate but simpler transient estimation technique commonly used in electronics and control theory to conduct quick assessments
 - Use the Initial Data Deletion methodology to "dig deeper", if needed

Convergence Time

Lueue Settling Time t_s

 $t_s \in [0, T]$ such that

$$|Q_{len}(t) - Q_{eq}| < \alpha Q_{eq}$$

for any $t > t_s$

Where $\alpha \in [0, \frac{1}{2}]$

Convergence Time

Metrics Classification

- Tier 1
 - Used to assess conformance with PAR objectives
 - Performance Related
 - Measurable with simulations
 - Implementation Related
 - Some measurable, others require judgment calls
- Tier 2
 - Used to achieve a better understanding of a proposal
 - Differentiate further in case of a tie based on Tier 1 metrics

Tier 1 Metrics

- Performance Metrics
 - Aggregate throughput
 - Flow completion time (Max, Avg, Min, Stddev)
 - Queue depth (Max, Avg, Stddev)
 - Bottleneck link utilization
 - Packets dropped / % time paused
 - Signaling overhead
- Implementation Metrics
 - Implementation complexity
 - Processing costs
 - IP cost
 - Support costs
 - Amount of tuning
 - Sensitivity to tuning
 - Effects of wrong tuning
 - Sensitivity to loss of signal
 - Envelope bytes (max frame size implications)

Tier 2 Metrics

- Additional Performance Metrics
 - Convergence time
 - Time above severe congestion watermark
 - Fairness
 - Throughput of congested flows
 - Throughput of innocent flows
 - Completion time of congested flows
 - Completion time of innocent flows

Acceptance Criteria

- Metrics alone allow us to merely compare proposals
- Our goal is different. Chose the proposal which:
 - Does a "good enough" job at controlling congestion as per the PAR objectives
 - With the lowest
 - Implementation costs
 - Deployment costs
- Acceptance Criteria is the tool that should tell us if the job is "good enough"

Acceptance Criteria

- For some metrics, acceptance criteria are trivial:
 - Bottleneck link throughput > 85%
 - Queue length bounded within a certain band
- For others, it's not so trivial:
 - Flow completion time ???
 - Aggregate throughput ???
- Shall we have a brainstorming on this?

