802.1aj Two port MAC Relay status

ADVANCE

John Messenger

December 2007

Two port MAC Relay

- Industry recognises that full 802.1 bridges are sometimes unnecessarily complex
- TPMR (802.1aj) attempts to provide a simpler relay function than a VLAN bridge
- PAR granted December 2004
 - Initial draft 0.0 May 2005
 - Draft 1.0 July 2005
 - Draft 1.1 August 2005
 - Draft 1.2 November 2005
 - Draft 1.3 May 2006
 - Draft 1.4 June 2006
 - Draft 2.0 January 2007
 - Draft 2.1 May 2007
 - Draft 2.2 October 2007 (Working group ballot)
- Interest from other standards bodies including MEF and DSL Forum
- This presentation represents a personal view of the status following the November 2007 meeting of 802.1 and of how a TPMR might be used.

TPMR topics

- Zero configuration option should work out-of-the-box
- Topologies
- Link maintenance
- Discovery
- Management
- ▶ A TPMR is a bridge
- Forwarding
- MAC types
- Loopback
- Link status propagation

Topologies

- TPMRs can be deployed singly, or in a chain
- A typical application might be as a demarcation device (NID)
- A TPMR has exactly two ports
 - ▶ Each port can by Ethernet or any MAC or emulated MAC which supports the 802.1 Internal Sublayer Service
- Protection is not supported in the draft standard
- Management using SNMP over Ethernet
 - Envisaged to be from an intelligent device which proxies the TPMR's managed objects into its own MIB

Link maintenance (not in 802.1aj)

- For Ethernet links, 802.3ah EFM OAM may be employed
 - ▶ This provides an indication of link up/down
 - ▶ Ethernet MAC link down indication is notoriously unreliable
- ▶ 802.3ah also provides
 - Link status change information
 - Link statistics including errored seconds etc.
 - Managed object access, which is NOT used in TPMR
- ▶ E-LMI (MEF UNI Phase 2) was considered, but is not suited as a link maintenance protocol
 - Intended for CE to retrieve status and service attributes from the network
 - Includes UNI and per-EVC configuration and status information
- Other MACs and emulated MACs can use their own protocol

Discovery

- A mechanism is required to allow discovery of TPMRs, so that the managing device knows what to manage
- Mandatory CFM (802.1ag) is the primary discovery method
 - At least a level 0 MIP is required in TPMR
 - Attached bridge or station can use Linktrace to discover connectivity of attached TPMR chain
 - All TPMRs in a chain can be found, but a method is needed to know when the end of the chain has been reached
 - CFM tells you what kind of device it is (uncertain if TPMR defined)
- LLDP (802.1ab) may be used for further probing
 - LLDP support is optional
- Ethernet EFM OAM (802.3ah) could have been chosen for Ethernet links, but is harder to use for chain discovery.

Management

- SNMP over Ethernet, without IP, is mandatory
 - SNMP over IP was rejected because of the desire to avoid IP address management and NMS interaction with individual TPMRs
 - 802.3ah EFM/OAM was rejected because of concerns over scalability to a chain and lack of "Set" capability
 - CORBA was considered too much of a stretch given that nothing else in 802.1 uses it
- Management is required to be supported on at least one of the data ports on the TPMR
- SNMP over Ethernet is specified in RFC4789
 - Untagged frames are used
 - Management VLAN option not yet discussed much
- SNMP over other transports is not precluded
 - ▶ For example, traditional SNMP over IP is allowed

Management, continued

- Discovery is used first to find what to manage
- How remote management is done is not specified, but perhaps
 - Retrieved objects are incorporated into the managing device's MIB
 - Incorporation into Interface MIB objects is a possibility
- Which ports can be used to manage the device?
 - A management block is provided to prevent access from the customer port
 - This block can be turned on and off by management
 - Unspecified issues:
 - Is access provided by authentication, to allow a device which is installed the wrong way round to be "recovered" remotely?
 - In a device with different port types, which port then?

A TPMR is a kind of 802.1 Bridge

- Only two ports
- No MAC address learning
- No VLAN tagging, but can be priority aware
- No Spanning Tree
 - BPDUs require special treatment (see later slide)

Forwarding

- General idea is to be transparent to protocols the TPMR does not implement
 - But some protocols are filtered out by the MAC, e.g. Pause
 - Transparent to BPDUs
 - Transparent to LACP (despite the layering violation)
 - One reserved address will be terminated by the TPMR and used for the LAN Status Propagation Protocol
- No modification of user data frames (e.g., tagging)
- Multiple queues are optional
 - Extract priority from Q-tag and 802.1ae LinkSec tag
 - Only for integrity-protected frames unencrypted
 - Recognise L2 control protocols and place in fastest queue
 - Typically BPDUs
- Otherwise like 802.1d/Q
 - Note that MRP (802.1ak) needs special handling in a Q-bridge

Loopback (not part of 802.1aj)

- Per-link loopback on Ethernet with 802.3ah EFM/OAM
 - Invoked by SNMP to previous hop
 - Beware that EFM OAM loopback discards returned frames
- Multi-hop CFM-based (802.1ag) loopback
 - Uses a special loopback frame
 - Can contain arbitrary data inside a TLV
 - Non-intrusive, in that user data continues
 - Stateless
 - Issues include VLAN-non-awareness
- Stateful per-VLAN loopback is not supported
 - CFM rejected this idea as not sufficiently useful at resolving datadriven errors
 - Could be provided using an EFM/OAM extension invoked from the previous hop using SNMP

LAN Status Propagation

- 802.1aj incorporates a link loss forwarding function called LAN Status Propagation
- Where TPMRs are placed in between existing bridges, they could interfere with protection and restoration processes
- LAN Status Propagation ensures that changes in connectivity are signalled to the bridges at the ends of a chain of TPMRs
- ▶ The signalling is compatible with existing 802.1 bridges

LAN Status Propagation Protocol

- The protocol is aimed at links over which RSTP may be running
 - ▶ It's important that when the connectivity is announced, it is available
- Another aim is to keep links up when possible, to allow management traffic to a maximal subset of TPMRs in a chain
- Basic idea:
 - For loss: send a loss message; if unacknowledged, blip the link;
 - For add: send an add message; if unacknowledged, blip the link;
 - Blipping the link alerts the next layer that connectivity has changed
- The protocol communicates only changes, not states
 - Link down is not periodically sent
- Optimisations are possible when a TPMR already knows that its neighbour doesn't speak the LAN Status Propagation Protocol (LSPP)

New Connectivity (general case)

Figure 23-5—New connectivity with MAC status notification

Key

OperUp

OperDown but locally MAC_Enabled

MAC_Enabled FALSE

MAC_Operational, but reporting OperDown to clients

Timers

- T_d = blip time (longish)
- $T_r = \text{retransmit time}$
- $T_{w} = ACK$ wait time

New Connectivity (general case)

- In the more general case, TPMRs don't know whether their link partners speak LSPP and must try it with timeouts
- To illustrate this, consider TPMR2 and its rightward neighbours
- MAC recovers in TPMR1 and TPMR2: MAC_Operational detected
- ▶ Both TPMRs enter do avoid creating loops
- ▶ As TPMRs 2-4 don't know if their neighbours speak LSPP:
 - TPMR2 sends "add" to its right neighbour and starts T_r and T_w
 - ▶ TPMRs 3 and 4 forward the "add", ack leftward, and start T_w
 - Received acks cancel T_w in TPMRs 2 and 3
 - T_r may repetitively expire in TPMR2, triggering retransmission of "add"
 - T_w will expire in TPMR4, triggering rightwards "blip" and leftwards "confirm"
 - Confirm cancels T_r in TPMR2

Loss of Connectivity

Figure 23-6—Connectivity failure

Key

OperUp

OperDown but locally MAC_Enabled

MAC_Enabled FALSE

MAC_Operational, but reporting OperDown to clients

Timers

- T_d = blip time (longish)
- T_r = retransmit time
- ► T_w = ACK wait time

Loss of Connectivity (general case)

- In the more general case, TPMRs don't know whether their link partners speak LSPP and must try it with timeouts
- To illustrate this, consider TPMR2 and its rightward neighbours
- Link fails between TPMR1 and TPMR2: MAC_Operational FALSE
- Both TPMRs enter 😯

- As TPMRs 2-4 don't know if their neighbours speak LSPP:
 - TPMR2 sends "loss" to its right neighbour and starts T_r and T_w
 - TPMRs 3 and 4 forward the "loss", ack leftward, and start T_w
 - Received acks cancel T_w in TPMRs 2 and 3
 - T_r may repetitively expire in TPMR2, triggering retransmission of "loss"
 - ▶ T_w will expire in TPMR4, triggering rightwards "blip" and leftwards "confirm"
 - Confirm cancels T_r in TPMR2

Questions and Answers

- How does LAN state propagation protocol interact with CFM?
 - This question is particularly relevant if RSTP is not being used
 - LSPP tells you "something changed"; CFM on top confirms connectivity
 - CFM could be used underneath to control MAC_Operational
- At initialisation of the system, will the TPMR learn whether its neighbours speak LSPP?
 - When TPMR comes up, its MACs will come up
 - That should trigger "add" messages going out
 - If there are responses, then there's an LSPP neighbour
 - If not, there isn't
 - So as long as initialisation is carefully handled, the TPMR will know its neighbours' LSPP capability
 - ▶ This means response to link loss can be immediate

Questions and Answers

- Can one assume that same link partner is present after blipping the link?
 - Even if the link partner changes, the protocol will still work
 - Once you learn your link partner doesn't speak the protocol, you won't learn they do if they are changed.

Use with telco-style protection

- LSPP is designed for RSTP-based protection systems
- It uses single events to signal a change
 - "loss" or "add" messages to partners speaking LSPP
 - "blipping" the link to partners who don't speak LSPP
- These events can trigger protection switching
 - "blipping" will automatically cause switching
 - Receipt of LSPP "loss" messages could do so
- However nothing in LSPP marks a link as down
 - Other events might trigger a switch back to this bad link
 - ▶ Examples include a break on the other link or revertive switching back
 - Needs an additional mechanism to verify recovery (e.g. slow CFM)
 - Mark the link as bad until you know it's good
- LSPP doesn't have the high traffic load of fast CFM

Thank You

ADVANCE

JMessenger@advaoptical.com

