Multiple Stream Reservation Protocol D1.0

Felix Feng
Multiple Talkers Assumptions

- Each Talker sends its Offering Declaration
 - Offering Declarations for the same Stream but from different Talkers may carry different TSpecs.
- Bridges process those Talker Declarations separately
 - Talker Declarations for the same Stream will not be merged.
 - Those Declarations may carry different result status, since they come from different Talkers and path, and may carry different TSpecs.
 - But only a single resource allocation will be done for a Stream on a certain Port even there are multiple Talker Declarations present.
- Listeners will receive each Talker Declaration separately
 - Talker Declarations for the same Stream will not be merged.
 - Those Declarations may carry different result status, since they come from different Talkers and path, and may carry different TSpecs.
 - A Listener should pick the Talker Offering Declaration with the ‘largest’ TSpec to construct the Listener Declaration.
Listener Declarations for the same Stream will be merged. The merged TSpec is the minimum of the TSpecs.

- But the merging is different from RSVP which “carries a flowspec that is the ‘largest’ of the flowspec requested by the next hops to which the data flow will be sent”.
- This is to guarantee that the Talker will not send a Stream that will interfere other Streams on a downstream link.
Basic workflow

1. Create the List of all Talker Declaration Registrations
2. Talker Port Processing for the Talker Declaration
3. Listener Port Processing for the Talker Declaration (on each Listener Port)
4. Propagate Listener Declarations

Propagate Talker Declarations; Create Port Stream List;
DMN (Access Control) Port and Non-DMN Port

A Non-DMN Port shall only receive the MSRP PDUs transmitted by DMN Ports, and ignore the MSRP PDUs transmitted by other Non-DMN Ports.

Full-duplex Link: Both ends are Access Control Port

802.11 wireless media: the AP Port is the Access Control Port

SAMSUNG Electronics
DMN Talker Port Processing (29.3.4.4.e, 29.3.4.5)

- Only performed on the shared media LAN

P3@B1 is a DMN Talker Port. It checks the Listener Declaration Registrations on this LAN and reserve or enquires resources accordingly. The DMN Port puts the updated offering into its “Trial DMN proxy Applicant List”.

No “Talker Port Processing” on **P2@B2** since the Talker Declaration is from a DMN Port.

P2@B3 will ignore **P1@B2**'s offering (29.1.1), but listen to **P3@B1**'s proxy offering after **P3@B1** reserves or enquires the resources on the LAN.

No “Talker Port Processing” on **P2@B3** since the Talker Declaration is from a DMN Port.

SAMSUNG Electronics
Listener Port processing (29.3.4.4.f, 29.3.4.6)

Listener Port processing (2.3.4.6): LAC reservation or enquiry on the egress.

Listener Port processing (2.3.4.6): LAC reservation or enquiry on the egress.

P1@B2 is a Non-DMN Port, therefore the LAC reservation or enquiry is always successful (P1 just forwards the Offering to the DMN port.)

P1@B2 is a Non-DMN Port, therefore the LAC reservation or enquiry is always successful (P1 just forwards the Offering to the DMN port.)
Propagate Listener Declarations (24.3.4.8)

- Check if ready1 is in the “Port Stream List” to decide if a Ready or Failed Listener Declaration should be propagated to other Ports (P1, P3, P4). (29.3.4.8.a,b)

For a Ready from a DMN port, P2@B1 need not forward the Ready back to the LAN to which it is attached. (29.3.4.9.e)

- Check if ready2 is in the “Port Stream List” to decide if a Ready or Failed Listener Declaration should be propagated to other Ports (P1, P2, P4). (29.3.4.8.a,b)

Since ready2 is from a Non-DMN Port, and P3@B1 is a DMN Port, it will check if ready2 is in the “LAN Stream List” to decide if a Ready or Failed proxy Listener Declaration should be propagated back via P3@B1. Note this proxy declaration will still carry P2@B3’s Applicant ID. (29.3.4.8.f,g)

This proxy ready carries the Applicant ID of P2@B3, therefore P2@B3 will ignore it. (29.3.4.11.b)
LAC-RESERVE.request

LAC-RESERVE.request {
StreamIdentifier,
StreamMACAddress,
StreamVID,
StreamPCP,
UpstreamRequestingTSpec,
DownstreamReservedTSpec,
TrialPortReservationList,
TrialLANReservationList,
ReservationLAN
}

SAMSUNG Electronics
LAC-RESERVE.request

TrialPortReservationList: \{S1, S2\}
TrialLANReservationList: \{S1\}

UpstreamRequestingTSpec1 <= DownstreamReservedTSpec: Reserve the resources on the shared media LAN (may need to reserve the resources on both the direction to and from the AP) for S1.

UpstreamRequestingTSpec1 > DownstreamReservedTSpec: No need to reserve resources since downstream can not support Talker1’s request; just enquire the resources to update the status of the Talker Declaration (may need to check the resources on both the direction to and from the AP).

UpstreamRequestingTSpec2 <= DownstreamReservedTSpec: Reserve the resources on the shared media LAN (only on the direction from the AP to the stn) for S2.

UpstreamRequestingTSpec2 > DownstreamReservedTSpec: No need to reserve resources since downstream can not support Talker2’s request; just enquire the resources to update the status of the Talker Declaration (only on the direction from the AP to the stn).
LAC-CONFIG.request

LAC-CONFIG.request { StreamIdentifier,
StreamMACaddress,
StreamVID,
StreamPCP,
PortStreamList
}

The LAC-CONFIG.request primitive takes the Port’s Port Stream List as its input parameter. It updates the Port’s Transmission Selection parameters, and the Reserved Address Registration entries in the Filtering Database from the information in the Port Stream List, which is computed during the MAP processing.