End Station Reaction Points Which Frames should a Rate Limiter slow?

Caitlin Bestler Caitlin.bestler@neterion.com

Congestion Notification Message Scope

Already limited

- Generated based on sampling at CP.
- Unicast delivery back to a single end station.

But the CNM supplies information

- It is not a "speeding ticket"
- Ideally all flows from this end station that reach the congested CP should be throttled
 - But what is realistic?
 - What set of frames should be impacted?

Prior queuing should be Irrelevant

End stations have many designs

• Specific internal queue structures should neither be rewarded or penalized.

Frequently the pre-CNM queue will be too wide

- The end station will have had no reason to separate flows based on this destination.
- Therefore many innocent flows will be slowed.

Sometimes the pre-CNM queue will be too narrow

- TOE/RDMA per-connection flows that are not the entire output from the end station to the destination.
- Reaction Points may be created *after* the CNM is received, or it may only identify a *potential* queue.

Use of Multiple SAs

- Using Multiple Source Addresses can benefit network utilization when they actually use multiple paths.
- But when they hit the same CP, they at best just hog a greater slice of the bandwidth.
 - The same traffic divided over more flows will be less "dinged" than a single flow would have been.
 - The only escape from this is to make the Source Address irrelevant to the scope of the Rate Limiter created *except* when there is specific reason to believe that Source Address truly will cause the CP to be avoided.
 - Creating an incentive to use *more* Source Addresses in each NIC.

Multiple Queues Can Be Tightly Coupled

- Multiple source queues can be tightly coupled and have different Source Addresses
 - Slowing one source will *instantly* cause other flows to increase their output.
 - Within many end stations the scheduler *pulls* "transmit descriptors" or "work requests" to fill the wire capacity.
 - Not the same as independent sources that "push" frames into a set of queues.
 - Instantly replacing the output capacity with frames that could be going to the same CP means that the CP will see no relief.

Deliberate Cheating Not Required

- Many legitimate design trade-offs can result in use of more SAs.
 - QCN should be neutral on these design trade-offs rather than encouraging or forbidding the use of more Source Addresses.

Example: Storage Client

- VM's use virtual drives. Parent partition is the sole client of the actual storage service.
- Each VM acts as its own client.

Example: HPC

- Each rank uses a different VF in a multi-function NIC.
- All ranks use a single VF.

Which Frames Should be slowed?

Ideal would be all frames

- From this end station
- That will hit the same Congestion Point.
- How close to this ideal be achieved with realistic realtime decision making?
- Initial assumptions:
 - Different Priority, probably a different CP
 - Different VID+DA: probably a different CP
 - But maybe not for "next hop" CPs.
 - Different SA: probably the same CPs
 - Unless the SA selects a different egress port.

L2 Flows that SHOULD NOT be impacted

Different Priority

Different Destination End Station

- Which should be presumed if VID + DA is unique.
 - Not feasible to know remote VID to FID mapping.
 - Not feasible to know when multiple remote DAs are really the same end station.
- Different non-aggregated egress port
 - If the first hop is a different non-aggregated port then it is reasonable to assume different CPs will be hit.
 - At least until reaching the final destination.

L2 Flows that SHOULD be impacted

- Same egress Port
- Same priority
- Same Destination VID+DA
- Rationale:
 - Other factors such as SA or L3/L4 headers are unlikely to have an impact on whether the same CP will be hit when they do not impact the egress port on the first hop.
 - Merely creating more SAs will *appear* to improve congestion robustness *locally* by *stealing* bandwidth.
 - Require actual knowledge of specific multi-pathing to justify NOT including the flows.

Possible special cases

- When the CP is the last funnel before the destination then multi-pathing will not avoid it.
 - Could be inferred by comparing CP's MAC Address with Destination.
 - Could be a boolean flag in the CNM.
- When the CP is on the first hop
 - End station could learn first hop on each port, and apply the Rate Limiter more broadly.
 - Alternate: CPs could be explicitly allowed to increase sampling rate on ports they know connect directly to end stations.

Special Cases Unlikely to Justify Special Effort

Same Egress Port, Same DA, Same Priority

- But interior CPs distribute traffic based on SA or L3/L4 headers.
- When this happens then *some* false head-of-line blocking will occur for frames that would really have missed the congested CP.
- But far more often the SA/L3/L4 will not change the CP, but merely evade the Rate Limiter. Traffic will *instantly* divert to the flows that vary of SA/L3/L4 and the CP will see *no* relief.

Different Everything, but same internal CP

- Using a link-state databases (from Shortest Path Bridging or TRILL) this case *could* be identified.
- But even if the date exists it is unlikely to be organized to allow a quick test of "would this frame go to this CP"?
- Why penalize an end station for having a link-state database available?