End Station Reaction Points Which Frames should a Rate Limiter slow? May 2008 – Rev 2

Caitlin Bestler Caitlin.bestler@neterion.com

Congestion Notification Message Scope

Already limited

- Generated based on sampling at CP.
- Unicast delivery back to a single end station.

But the CNM supplies information

- It is not a "speeding ticket"
- Ideally all flows from this end station that reach the congested CP should be throttled
 - But what is realistic?
 - What set of frames should be impacted?

Prior queuing should be Irrelevant

End stations have many designs

• Specific internal queue structures should neither be rewarded or penalized.

Frequently the pre-CNM queue will be too wide

- The end station will have had no reason to separate flows based on this destination.
- Therefore many innocent flows will be slowed.

Sometimes the pre-CNM queue will be too narrow

- TOE/RDMA per-connection flows that are not the entire output from the end station to the destination.
- Reaction Points may be created *after* the CNM is received, or it may only identify a *potential* queue.

Use of Multiple SAs

- Using Multiple Source Addresses can benefit network utilization when they actually use multiple paths.
- But when they hit the same CP, they at best just hog a greater slice of the bandwidth.
 - The same traffic divided over more flows will be less "dinged" than a single flow would have been.
 - The only escape from this is to make the Source Address irrelevant to the scope of the Rate Limiter created *except* when there is specific reason to believe that Source Address truly will cause the CP to be avoided.
 - We should avoid creating an incentive to use *more* Source Addresses in each NIC.

Multiple Queues Can Be Tightly Coupled

- Multiple source queues can be tightly coupled and have different Source Addresses
 - Slowing one source will *instantly* cause other flows to increase their output.
 - Within many end stations the scheduler *pulls* "transmit descriptors" or "work requests" to fill the wire capacity.
 - Not the same as independent sources that "push" frames into a set of queues.
 - Instantly replacing the output capacity with frames that could be going to the same CP means that the CP will see no relief.

Deliberate Cheating Not Required

- Many legitimate design trade-offs can result in use of more SAs.
 - QCN should be neutral on these design trade-offs rather than encouraging or forbidding the use of more Source Addresses.

Example: Storage Client

- VM's use virtual drives. Parent partition is the sole client of the actual storage service.
- Each VM acts as its own client.

Example: HPC

- Each rank uses a different VF in a multi-function NIC.
- All ranks use a single VF.

Which Frames Should be slowed?

Ideal would be all frames that:

- Are from this end station
- Will hit the same Congestion Point.
- How close to this ideal be achieved with realistic realtime decision making?
- Initial assumptions:
 - Different Priority, probably a different CP
 - Different VID+DA: probably a different CP
 - But maybe not for "next hop" CPs.
 - Different SA: probably the same CPs
 - Unless the SA selects a different egress port.
 - Or there is another reason to expect a different path.

L2 Flows that SHOULD NOT be impacted

Different Priority

Different Destination End Station

- Which should be presumed if VID + DA is unique.
 - Not feasible to know remote VID to FID mapping.
 - Not feasible to know when multiple remote DAs are really the same end station.
- Different non-aggregated egress port
 - If the first hop is a different non-aggregated port then it is reasonable to assume different CPs will be hit.
 - At least until reaching the final destination.

L2 Flows that SHOULD be impacted

Full match on:

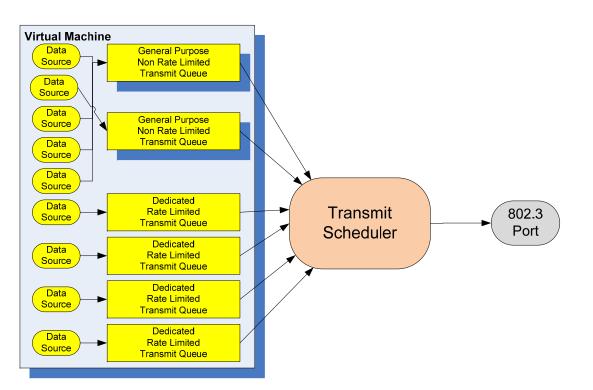
- Egress Port
- Priority
- Destination VID+DA
- Rationale:
 - Other factors such as SA or L3/L4 headers are unlikely to have an impact on whether the same CP will be hit when they do not impact the egress port on the first hop.
 - Merely creating more SAs will *appear* to improve congestion robustness *locally* by *stealing* bandwidth.
 - Require actual knowledge of specific multi-pathing to justify NOT including the flows.

Possible special cases

- When the CP is the last funnel before the destination then multi-pathing will not avoid it.
 - Could be inferred by comparing CP's MAC Address with Destination.
 - Could be a boolean flag in the CNM.
- When the CP is on the first hop
 - End station could learn first hop on each port, and apply the Rate Limiter more broadly.
 - Alternate: CPs could be explicitly allowed to increase sampling rate on ports they know connect directly to end stations.

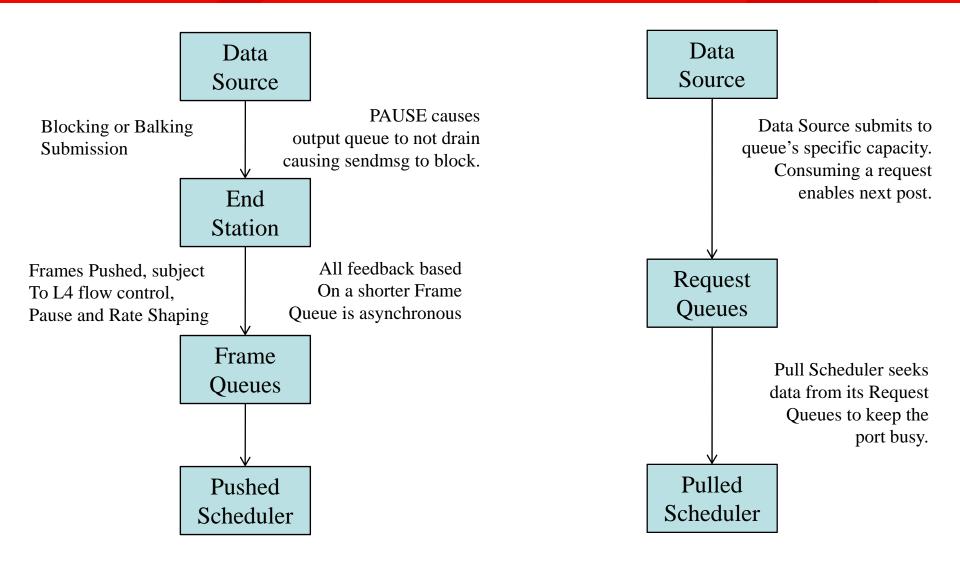
Special Cases Unlikely to Justify Special Effort

- Same Egress Port, Same DA, Same Priority –
 But interior CPs distribute traffic based on SA or L3/L4 headers.
 - When this happens then *some* false head-of-line blocking will occur for frames that would really have missed the congested CP.
 - But far more often the SA/L3/L4 will not change the CP, but merely evade the Rate Limiter. Traffic will *instantly* divert to the flows that vary of SA/L3/L4 and the CP will see *no* relief.
- Different Everything, but same internal CP
 - Using a link-state databases (from Shortest Path Bridging or TRILL) this case *could* be identified.
 - But even if the date exists it is unlikely to be organized to allow a quick test of "would this frame go to this CP"?
 - Why penalize an end station for having a link-state database available?

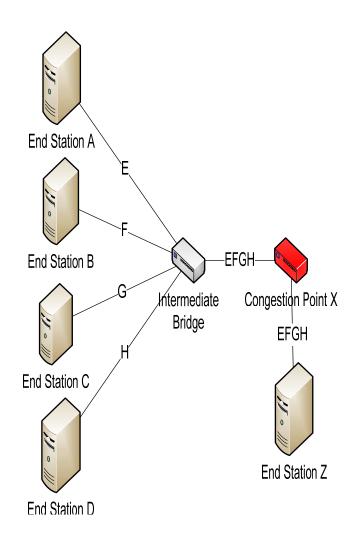

Split Reaction Points

- End Station may have special purpose Output Queues that have a narrower scope than desired for a Rate Limiter.
 - Primary example: Send Queues for TOE/RDMA.
- For some designs the output from these queues would not naturally flow past general purpose Rate Limiters.
- Proposed solution: allow "split Rate Limiters" to be created on multiple internal queues in response to a single Congestion Notification Message

End Station Congestion Points

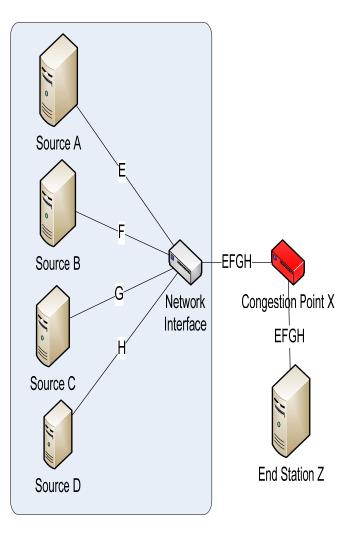

- Not the topic of this presentation, but...
- End Station Congestion Points are NOT necessarily the inverse of its Reaction Points.
- For multi-function devices, the CPs are likely VF (Virtual Function) dependent.
 - VID + DA determines VF, but multiple indexes could yield the same VF.
 - This is frequently a "default" VF for unknown addresses.
- Having VF sensitive QCN triggers is desirable to limit inbound traffic based on VF.

Hypothetical Multi-function NIC with all Qau, Qaz and Qbb support



- Most Data Sources feed general purpose transmit queues that are not rate limited.
- Data Sources may be diverted to dynamically allocated rate limited transmit queues
- Data Sources may have dedicated Transmit Queues which are optionally Rate Limited (RDMA/TOE/iSCSI).
- Each Transmit Queue is for
 - Single Virtual NIC
 - Single Traffic Class
- Each PCB priority applies to set of transmit queues.
- Each Transmit Queue is accounted for by one ETS priority.
- Additional weighted round robin likely applies to each VNIC.

Push vs Pull



Data Sources on Separate End Stations

- Flows E,F,G and H to End Station Z all reach CP X in the Red Bridge.
- CP X has sent CNM for Flow E to End Station A.
- A reduce E's rate.
- Queues in the Intermediate Bridge are drained more rapidly because E's rate is reduced.
 - Immediate reduction in aggregate flow to CP X is unlikely, but there is an immediate drop in the ingress rate (because E is reduced).
 - Draining of queues on the Intermediate Bridge will result in fewer PAUSEs to End Stations B, C and D.
 - Eventually this will cause F, G and H to speed up unless they get a CNM. Reducing the ingress rate reduction.
 - But it will not be immediate.

Data Sources on Single End Stations

- Flows E,F,G and H to End Station Z all reach CP X in the Red Bridge.
- CP X has sent CNM for Flow E to Source Address used for flow E.
- Minimally scoped Rate Limiter:
 - Only Source A reduces it's rate.
 - Network Interface, seeking to feed a hungry port, increases the rate at which it transmits from B, C and D.
 - There is no immediate reduction in the aggregate flow to CP X.
 - There is no reduction in the ingress to the network of frames destined for CP X.
 - There will be no reduction until all sources on the End Station have received a CNM.

End Station scoped Rate Limiter

• E,F,G and H are all reduced in response to the first Rate Limiter.

End Station Stack Must Participate

- When a flow is rate limited the source must ultimately be slowed to match.
- With connection-specific RDMA style interfaces this is just a matter of not completing Send Work Requests.
- But existing IP stacks generally use a limited number of queues into a given L2 device.
- Possible results:
 - Head of line blocking: a pause on one L2 flow will impact all traffic for the same Priority, whether to the same destination or not.
 - Buffer Drain: to avoid head-of-line blocking the driver will attempt to put rate limited frames in a side-queue.
 - Even if stack supports out-of-order completion, it will result in memory pressure.
 - Worst case: memory pressure causes swap out to network storage that is reached via the problem Congestion Point.

Method of Participation may vary

QCN feedback to L4

 Any L4 socket that is impacted by a Rate Limiter is told of the rate limit in L3/L4 terms. It adjusts it's L4 congestion window accordingly.

Directed Queuing

• L2 driver informs its client that a specific flow should be placed in a distinct input queue.

Directed Pausing

• L2 driver informs its client that a specific submission cannot not be accepted at this time. The same frame should not be retried until a specified time (or callback). The source socket should block, but not any others.