QCN: Description and Benchmark Simulations

Berk Atikoglu, Abdul Kabbani, Rong Pan, Balaji Prabhakar

QCN (A Brief Review) - Congestion Point

How To Sample & Mark A Packet?

QCN (A Brief Review)

- Reaction Point

Two counters: byte-counter and timer cycle through independently Both reset by Fb < 0 signal

- Byte-Counter
 - 5 cycles of FR (150KB/cycle)
 - AI cycles afterwards (75KB/cycle)
 - Fb < 0 sends byte-counter to FR
- Timer
 - 5 cycles of FR (TIMER_PERIOD msec/cycle)
 - AI cycles afterwards (TIMER_PERIOD/2 msec/cycle)
 - Fb < 0 sends timer to FR
- Rate Limter (RL)
 - In FR if both byte-counter and timer's stage counter is less than FAST_RECOVERY_TH
 - In AI if only one of byte_counter or timer 's stage counter is not less than FAST_RECOVERY_TH
 - In HAI if both byte_counter and timer 's stage counter are not less than FAST_RECOVERY_TH

Byte Counter

5

Timer

Rate Limiter State Diagram

Rate Changes - Upon a Fb < 0 message

- TR is decreased implicitly
 - if si_bcount != 0

-TR = CR

$$-$$
 CR = CR * (1 $-$ Gd*IFbI)

Rate Changes - Upon byte_counter or timer expires

FR

- if the first cycle of byte-counter/timer expires and TR > $10^{*}CR$: TR
- = TR/8

```
- CR = (CR+TR)/2
```

```
AI
-TR = TR+R_AI; CR = (CR+TR)/2
```

```
HAI, event numbered i = 1, 2, ...
At the end of event number i:
TR = TR + (i*R_HAI); CR = (CR+TR)/2
```

Simulation Parameters

- Traffic
 - Uniform destination distribution (to all nodes except self)
 - Fixed frame size = 1500 B
- Switch
 - VOQ with 2.4MB shared memory
 - Partitioned memory per input, shared among all outputs
 - No limit on per-output memory usage
- Adapter
 - RLT: VOQ and single; RR service
 - One rate limiter per destination
 - Egress buffer size = 1500 KB,
 - Ingress buffer size = Unlimited

- QCN
 - W = 2.0
 - Q_EQ = 33 KB
 - GD = 0.0078125
 - Base marking: once every 150 KB
 - Margin of randomness: 30%
 - R_{unit} = 1 Mb/s
 - MIN_RATE = 10 Mb/s
 - BC_LIMIT = 150 KB
 - TIMER_PERIOD = 15 ms
 - R_AI = 5 Mbps
 - R_HAI = 50Mbps
 - FAST_RECOVERY_TH = 5
 - Quantized_Fb: 6 bits

Baseline #1

Service Rate: 2.0Gbps - Queue Size

12

Service Rate: 2.0Gbps - Throughput

Simulation Time (Sec)

Service Rate: 1.0Gbps - Queue Size

Service Rate: 1.0Gbps - Throughput

Simulation Time (Sec)

Service Rate: 0.5Gbps - Queue Size

Simulation Time (Sec)

Service Rate: 0.5Gbps - Throughput

Extending The Hot Spot Duration - To Show Stability

Service Rate: 2.0Gbps - Queue Size

Service Rate: 2.0Gbps - Throughput

Service Rate: 1.0Gbps - Queue Size

21

Service Rate: 1.0Gbps - Throughput

Service Rate: 0.5Gbps - Queue Size

23

Service Rate: 0.5Gbps - Throughput

24

Baseline #5

5. Symmetric Topology Single HS – Bursty

Workload:

- Point-to-point from h1-4 to h5
- Load: 100%
- H1 and H2 on-off sources (Ton = Toff = 20 ms)
- On/Off period exponential distribution

Scenarios:

- Burst periods: 20, 10, 5mS

Verdana regular 7pt. Legal text goes here Required

-Congest Point's Queue Size - 20ms on/off

Net Throughput @ Congestion Point 20ms on/off

-Congest Point's Queue Size - 10ms on/off

-Net Throughput @ Congestion Point - 10ms on/off

-Congest Point's Queue Size - 5ms on/off

Net Throughput @ Congestion Point 5ms on/off

Baseline #6

- Scenarios:
 - PAUSE: Enabled/Disabled

Verdana regular 7pt. Legal text goes here Extended

Without Pause - Congested Queue Size (0.5Gbps)

Without Pause - Congested Points' Throughput

Without Pause - Individual Rates

Without Pause - Individual Rates

Pause - Congested Queue Size (0.5Gbps)

Pause - Congested Points' Throughput

Pause - Potential Congestion Queues

With Pause - Individual Rates

With Pause - Individual Rates

Hot Spots' Duration of 80ms

Without Pause - Congested Queue Size (0.5Gbps)

Without Pause - Congested Points' Throughput

44

Without Pause - Individual Rates

Congestion Point 1

Without Pause - Individual Rates

Pause - Congested Queue Size (0.5Gbps)

Pause - Congested Points' Throughput

Pause - Potential Congestion Queues

With Pause - Individual Rates

50

With Pause - Individual Rates

Congestion Point 2

Baseline #7

7. Multistage Dual HS (Light & Heavy)

Workload:

- Two switches, all links 10 Gb/s, no background traffic
- Four flows of 9 Gb/s each from nodes 1, 4, 5, 7 to node 8
- One flow of 9 Gb/s from node 2 to node 4
- Two congestion points
 - Port from switch 1 to switch 2
 - Port from switch 2 to node 8
- Fair allocation should provide 2.5 Gb/sfor all flows to node 8 and 7.5 Gb/sfor flow to node 4

Congested Points' Queue Size

Congested Points' Throughput

Individual Flow Rates

55

Baseline #8

8. Multistage Dual HS (Heavy & Light)

Workload:

- Two switches, all links 10 Gb/s, no background traffic
- Two flows of 9 Gb/seach from nodes 1 and 4 to node 8
- Three flows of 9 Gb/seach from node 2 to node 4, 3 to 5, and 6 to 7
- Two congestion points
 - Port from switch 1 to switch 2
 - Port from switch 2 to node 8
- Fair allocation should provide 2.5 Gb/sfor all flows to switch 2 and 7.5 Gb/sfor flow from node 4 to node 8

- Congested Points' Queue Size

Without Pause - Congested Points' Throughput

Individual Flow Rates

Baseline #2

Workload:

- All: Uniform distribution traffic (background traffic)
- Nodes 1-6: 25% (2.5Gbps), Nodes 7-10: 40% (4 Gbps)
- Primary Hotspot:
 - Node 7 service rate = 5% (Rx only)
 - If saturation tree spreads => 5 congestion points total
- Scenarios:
 - PAUSE: Enabled/Disabled
 - Verdana regular 7pt. Legal text goes here

Without Pause - Congested Queue Size (0.5Gbps)

Simulation Time (sec)

Benchmark 2 – Bottleneck Throughput

Simulation Time (sec)

Without Pause - Uncongested Queue Size (0.5Gbps)

Simulation Time (sec)

Benchmark 2 – Individual Flows' Throughput

Simulation Time (sec)

With Pause - Bottleneck Queue Size

65

Benchmark 2 – With Pause - Bottleneck Link Throughput (bps)

Simulation Time (sec)

Benchmark 2 – With Pause - Uncongested Queue Size

Simulation Time (sec)

Benchmark 2 – With Pause - Individual Flow Throughput (bps)

Scenario 2: 80ms Hot Spot Duration

Without Pause (80ms Hot Spot Duration) - Congested Queue Size (0.5Gbps)

Benchmark 2 (80ms Hot Spot Duration) – Bottleneck Throughput

With Pause (80ms Hot Spot Duration) - Congested Queue Size (0.5Gbps)

Simulation Time (sec)
Benchmark 2 (80ms Hot Spot Duration) – Bottleneck Throughput

Simulation Time (sec)

Benchmark 3

3. OG HS Multi-Hop: Selected Victims

Workload:

- Four culprit flows of 2 Gb/s each from nodes 1, 4, 8, 9 to node 7 (hotspot)
- Three victim flows of 7 Gb/s each: node 2 to 9, node 5 to 3, node 10 to 6
- Node 7 service rate = 20%
- Five congestion points, All switches and all flows affected
- Fair allocation provides 0.5 Gb/s to all culprits and 7 Gb/s to all victim

Without Pause - Bottleneck Queue Size (2Gbps)

75

Without Pause - Bottleneck Throughput

Culpit Flows - Throughput (0.5Gbps)

77

Victim Flows - Throughput (7Gbps)

Wit Pause - Bottleneck Queue Size (2Gbps)

Simulation Time (sec)

Wit Pause - Bottleneck Throughput

Culpit Flows - Throughput (0.5Gbps)

Victim Flows - Throughput (7Gbps)

Scenario 3: 80ms Hot Spot Duration

Without Pause (80ms Hot Spot Duration) - Congested Queue Size (2Gbps)

84

Benchmark 3 (80ms Hot Spot Duration) – Bottleneck Throughput

With Pause (80ms Hot Spot Duration) - Congested Queue Size (2 Gbps)

86

Benchmark 3 (80ms Hot Spot Duration) – Bottleneck Throughput

