

QCN Serial-HAI Simulation Benchmarks and Qeq Eric Geisler

Manoj Wadekar

14 February 2008

Goals

- Present required benchmarks for QCN using Opnet
- Study effects of varying Qeq
- Study effects of more severe congestion

Simulation Parameters

Traffic

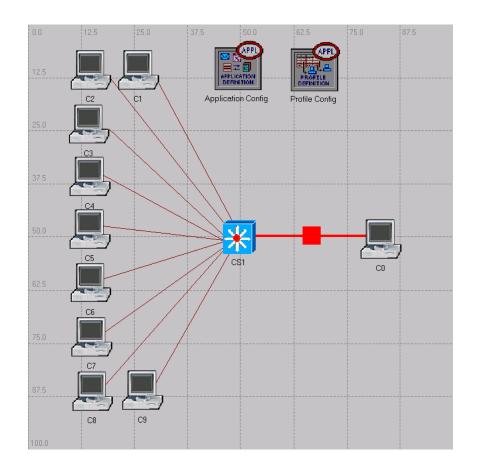
٠

•

٠

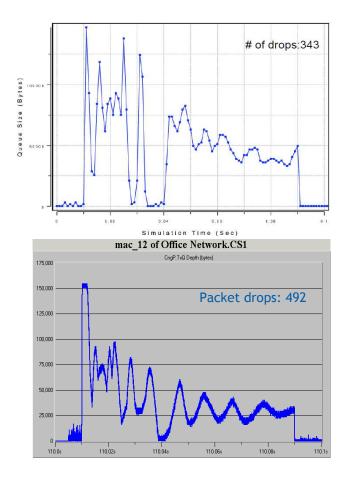
- I.i.d. Bernoulli arrivals
- Uniform destination distribution (to all nodes except self)
- Fixed frame size = 1500 B
- Switch
 - > VOQ with 1.5MB shared mem
 - Partitioned memory per input, shared among all outputs
 - > No limit on per-output memory usage
 - PAUSE enabled
 - Applied on a per input basis based on local high/low watermarks
 - ✓ watermark_{high} = 130 KB
 - ✓ watermark_{low} = 110 KB
- Adapter
 - > RLT: VOQ and single; RR service
 - > One rate limiter per destination, limited to 16
 - Egress buffer size = 150 KB,
 - Ingress buffer size = Unlimited
 - PAUSE enabled
 - ✓ watermark_{high} = 150 rtt*bw KB
 - watermark_{low} = watermark_{high} 20 KB

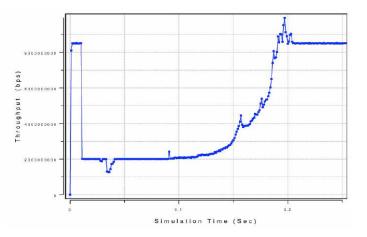
- QCN and ECM base
 - ≻ W = 2.0
 - ≻ M = 150 KB
 - ➢ Q_{eq} = 26 KB
 - \succ R_{unit} = R_{min} = 10 Mb/s
 - \succ ECM_{MAX} enabled, Q_{mc} = M
 - ➢ ECM_{0,0} disabled
- QCN-SHAI
 - ➢ G_d = 0.0078125 (1 / 128)
 - > BC_LIMIT = 150 KB
 - SI timer period = 15 ms
 - $> A_{ai} = 5 \text{ Mb/s}$
 - > A_{hai} = 50 Mb/s
 - Fast Recovery Threshold = 5
 - ➢ 6-bit quantization
 - > Jitter at RP (bytes and timer) = 30%
 - > Jitter at CP (packet marking) = 30%

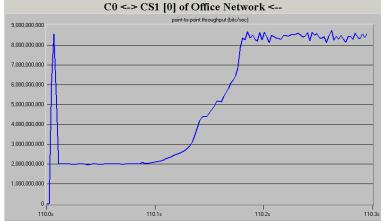

Switch & Adapter Parameters

- Switch parameters
 - M = 150 KB per port
 - Dedicated per input, shared across all outputs
 - Configurable OQ limit; frames are dropped when OQ length exceeds limit
 - PAUSE enabled or disabled
 - Applied on a per input basis based on local high/low watermarks
 - watermark_{high} = M rtt*bw KB
 - watermark_{low} = M rtt*bw 10 KB
 - If disabled, frames dropped when input partition full
- Adapter parameters
 - Virtual output queuing, round-robin VOQ service
 - Input buffer size IB = 1.5 MB, partitioned per VOQ
 - Drop when VOQ full
 - Output buffer size OB = 150 KB
 - Limit of 16 rate limiters
 - PAUSE enabled
 - watermark_{high} = OB rtt*bw KB
 - watermark_{low} = watermark_{high} 10 KB

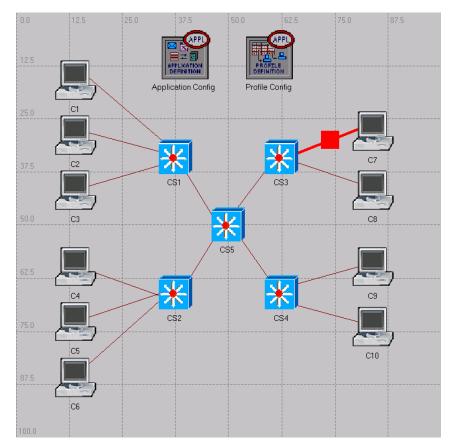
OG Hotspot, Single Hop


2 Gbps OG hotspot for 80ms @ CS1→C0 802.3x PAUSE disabled


- 10 Gbps links, 500ns link latency
- All 10 hosts C0-C9 @ 85% loading
- Spatially uniform (except self)
- Temporally Bernoulli

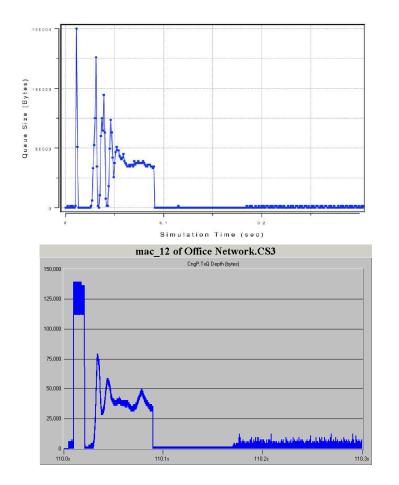


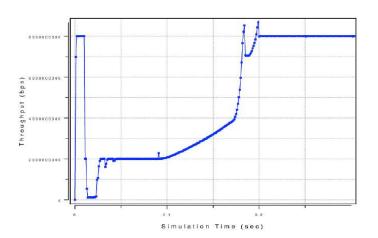
Queue Depth and Hotspot Throughput

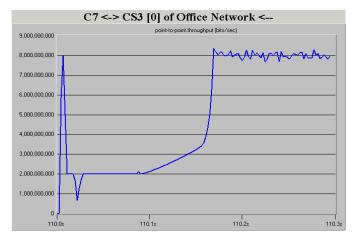

OG Hotspot, Multi Hop: Selected Victims

2 Gbps OG hotspot for 80ms @ CS3 \rightarrow C7

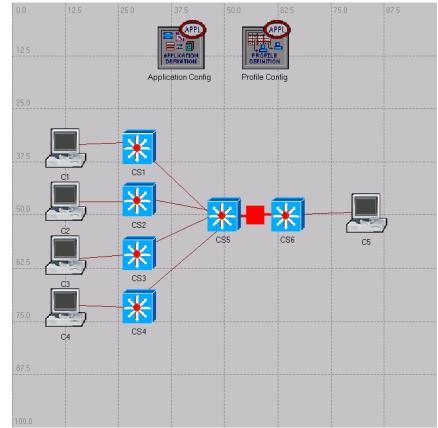
802.3x PAUSE enabled


Fair allocation provides 0.5Gb/s to culprit flows and 7Gb/s to victim flows

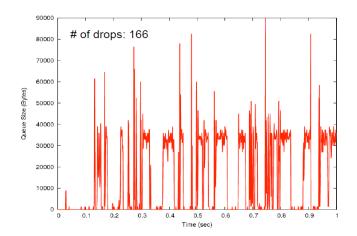

- 10 Gbps links, 500ns link latency
- 4 culprit flows: 1, 4, 8, 9 @ 70% \rightarrow 7
- 3 victim flows: $2 \rightarrow 9, 5 \rightarrow 3, 10 \rightarrow 6 @ 20\%$
- Hosts 3, 6, 7 are only receiving
- Temporally Bernoulli

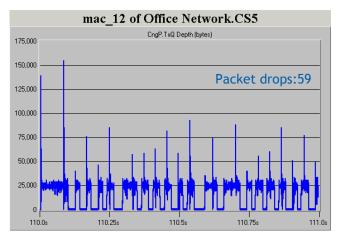


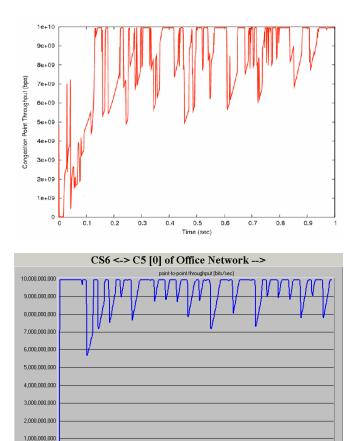
Queue Depth and Hotspot Throughput



Symmetric Topology, Single HS: Bursty


Congestion point typically occurs at $CS5 \rightarrow CS6$ 802.3x PAUSE disabled


- 10 Gbps links, 500ns link latency
- Point-to-point from C1-C4 to C5
- Nodes 1-4 @ 100% → C5
- Nodes 1-2 have bursty load (Ton = Toff = 20ms)
- On/off period exponential distribution



Queue Depth and Hotspot Throughput

0

110.0s

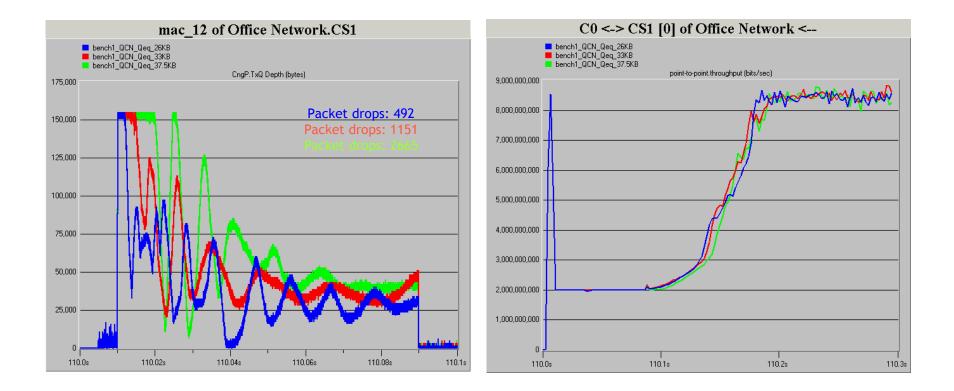
110.2s

110.4s

110.6s

110.8s

(intel)


111.0s

Next Goal

- Present required benchmarks for QCN using Opnet
- Study effects of varying Qeq
- Study effects of more severe congestion

Queue Depth and Hotspot Throughput Benchmark 1, Qeq = 26, 33, 37.5 KB

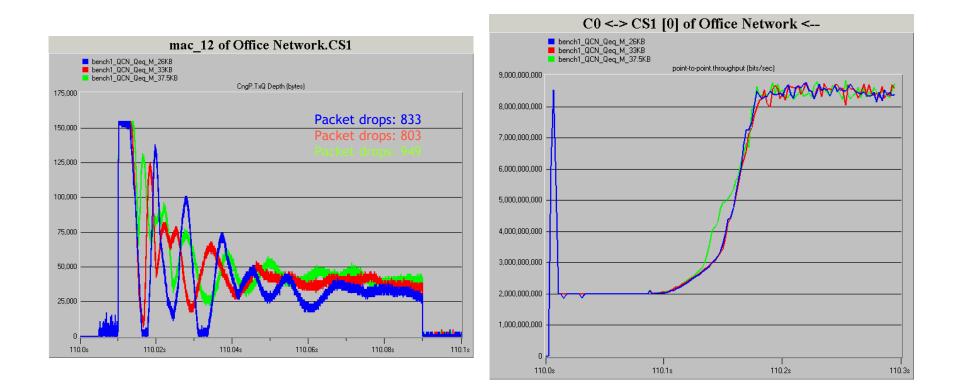
Qeq and quantized Fb

Formulas:

 $Fb = (Qeq - Qlen) - W \cdot (Qlen - Qlen_old)$

 $Max_Fb = Qeq \cdot (2 \cdot W + 1)$

Quantized_Fb = $(Fb / Max_Fb) \cdot 64;$


Analysis:

- Qeq scales the quantization of Fb for a given congestion and max queue size.
- As Qeq \uparrow , the negative transient slope \downarrow and the queue remains full longer.
- To remove the impact of Qeq on Fb quantization, Max_Fb could be set to a constant. The Max_Fb formula above is approximately the size of the egress buffer.
- Using Max_Fb = M may avoid any Qeq tuning to improve negative transient performance.

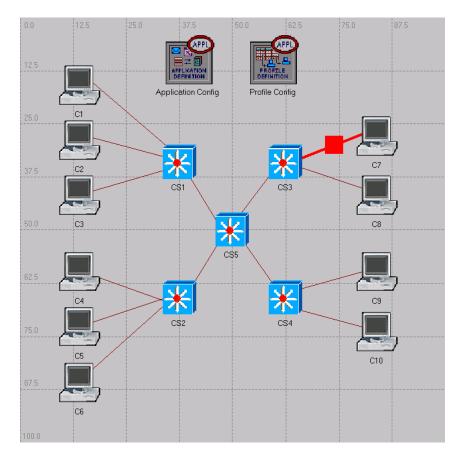
Experiment:

Use Max_Fb = M and repeat benchmark 1 to compare the queue depth and throughput.

Queue Depth and Hotspot Throughput Benchmark 1, Qeq = 26, 33, 37.5 KB, Max_Fb = M

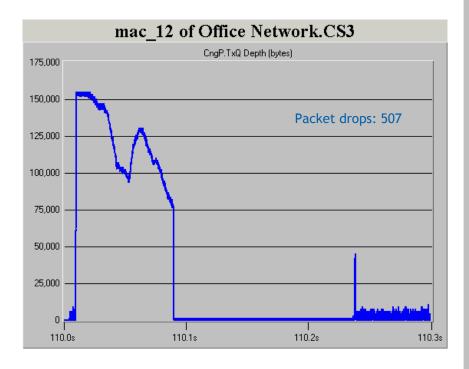
Next Goal

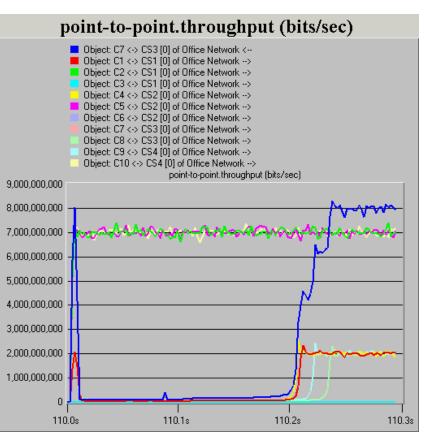
- Present required benchmarks for QCN using Opnet
- Study effects of varying Qeq
- Study effects of more severe congestion


OG Hotspot, Multi Hop: Selected Victims

100 Mbps OG hotspot for 80ms @ CS3 \rightarrow C7

802.3x PAUSE enabled


Fair allocation provides 50Mb/s to culprit flows and 7Gb/s to victim flows


- 10 Gbps links, 500ns link latency
- 4 culprit flows: 1, 4, 8, 9 @ 70% → 7
- 3 victim flows: $2 \rightarrow 9, 5 \rightarrow 3, 10 \rightarrow 6 @ 20\%$
- Hosts 3, 6, 7 are only receiving
- Temporally Bernoulli

Queue Depth and Hotspot Throughput Benchmark 3, 1% service rate

Next Steps

- Discuss simulation goals of each team.
 - Identify complimentary tasks.
- Heterogeneous link speeds (1/10/100 Gbps)
- TCP

