

 \triangleright

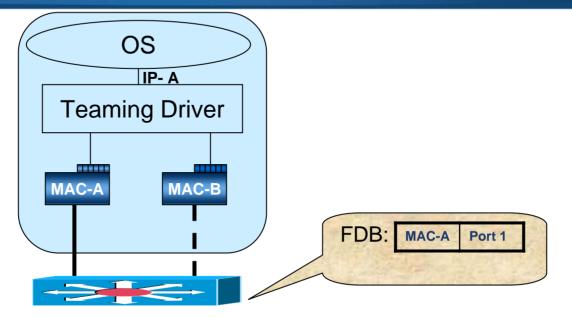
1

NIC Teaming and CN

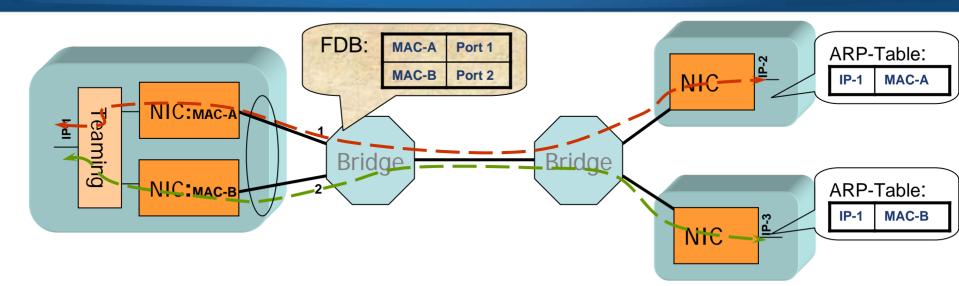
Manoj Wadekar

IEEE 802 Plenary Nov 2008

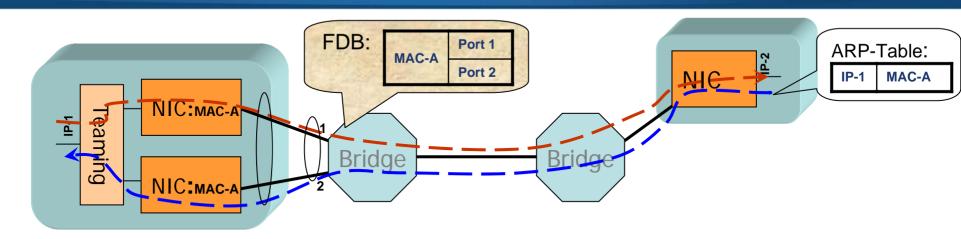
Nov 11, 2008


NIC Teaming modes

Goals of Teaming:


- Fault Tolerance
- Load Balancing
- Etc.
- Mode 1: Adapter Failover Teaming
- Mode 2: Adapter Failover & Load balancing
- Mode 3: Link Aggregation (Static and dynamic LACP)

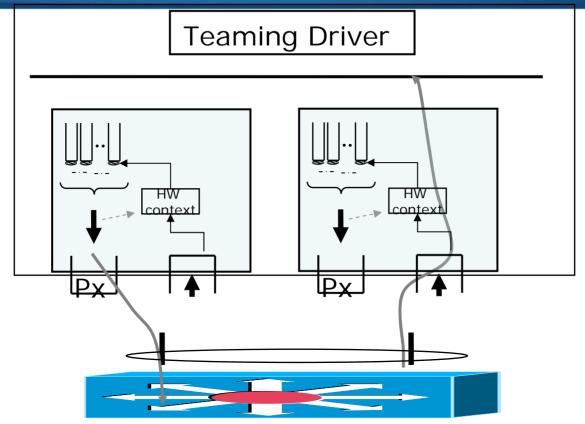
Mode 1: Adapter Failover Teaming


- Multiple Adapter ports part of a "team"
- If one port "fails", secondary port "takes over"
- NIC ports provide functionality
- Switch ports are unaware of "Teaming"
- Only one port active at a time
 - So flows are uniquely mapped to appropriate team port

Mode 2: Load Balancing Teaming

- Load balancing across Team of ports
 - Single IP/MAC address to OS, however, traffic from each team ports – carries different MAC address
 - ARP responses are "trapped" by teaming driver to provide appropriate MAC address of teamed port
- Switch ports are unaware of Teaming
 - So flows are uniquely mapped on each team port

Mode 3a: Link Aggregation - Static



- Traffic from all team ports carries same MAC address
- Adapter and Switch participate in load balancing traffic on team ports
 - Hashing asymmetrical on two sides of the link
 - Flow mapping is not guaranteed to be symmetrical
 - E.g. IP1→IP2 traffic on teamed port 1 does not guarantee IP2→IP1 traffic will be mapped on to same port 1

- Same as Mode 3a
- LACP (Link Aggregation Control Protocol) provides ability to add/remove ports from a team

Challenges of 3a and 3b

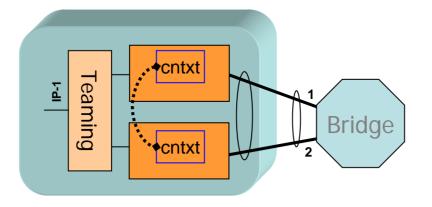
- Multiple ports are aggregated and HW stores context in HW
 - E.g. Offload information (FCoE, TCP, iSCSI, iWARP) etc.
- Multiple ports are aggregated and CN reaches wrong port
 - CN needs to be handled expeditiously
- Can cause Large latency to CN handling, performance impact to offload functionality

CN Operation in Teaming Mode

Teaming Mode	Operation	Details
Mode 1 (HA)		CN Forwarded only to active port
Mode 2 (LB)		Each CN carries unique MAC address – delivered to correct port
Mode 3 (LA)		CN can be delivered to wrong port. May result in very high latency penalty

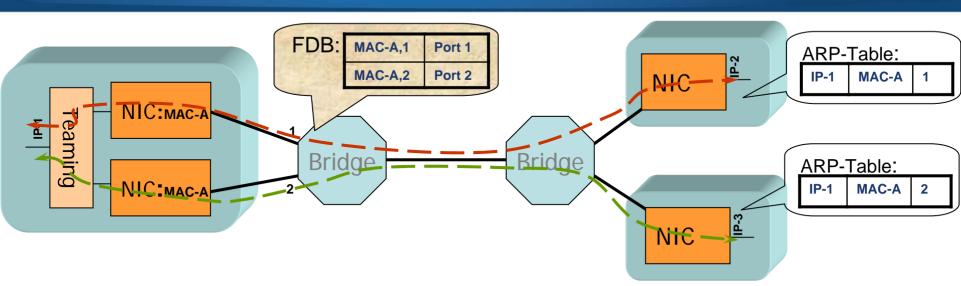
CN needs to be handled within "short" period

- Crossing PCI may result in high latency \rightarrow 100s of uS
- May need to be handled below PCI: Equivalent of "acceleration"
- Any "context" below PCI will have similar problems


Potential Solutions

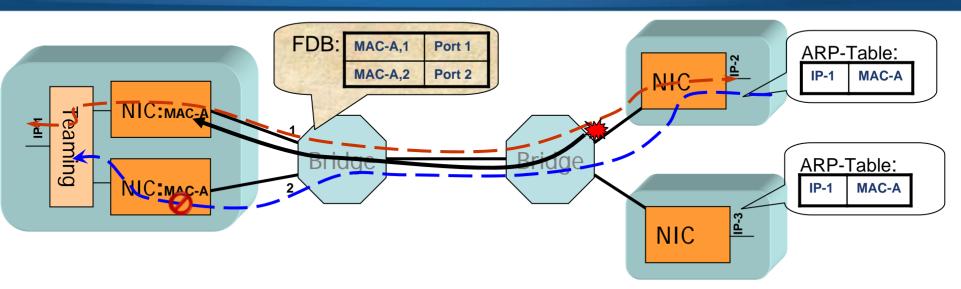
⊳

- Path-1: Solve "HW Context" problem addresses both data path and control path
- Path-2: Solve "control path" only (solves CN issue, but does not address data path)
 - Needs discussion of use case
- Path-3: Do nothing
 - CN is not creating new problem allow NIC vendors to solve with available solutions


Path 1a: Duplicate "Context"

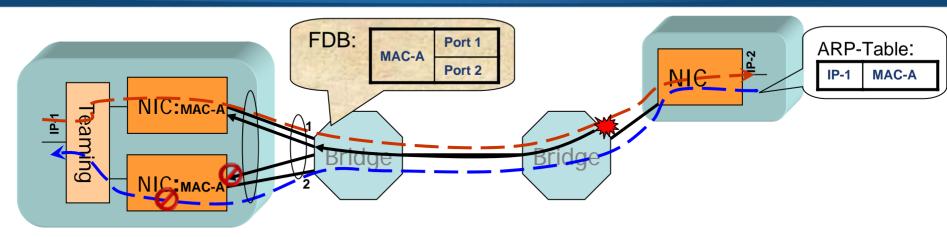
Duplicate "context" in all the team ports

- "Learn" Rx-port for a given flow and configure "context" in that port
- Maintain "sync" between Tx and Rx ports
- Investigate feasibility, race conditions, timeout issues, retransmissions etc.
- Does not solve CN problem


Path 1b: Extend End-node identity

Extend MAC-address space

- Identify APID (agg-port-id) in packets
- Edge switches and ARP tables to learn this APID
 - Allows edge switches to forward return packets to appropriate ports
- Lot of change: NICs, Switches, IP/ARP
- What are potential benefits over Mode-2?


Path 2a: Solve CN problem only: APID

- Identify APID (agg-port-id) in packets
 - Edge switches learn APID
 - Or edge switches can modify packets with APID
 - CP turns around APID in CN packet
 - Edge switch (before providing packet to end station) uses APID for forwarding:
 - {VID, DA, APID} if EtherType = CN
 - {VID, DA} otherwise
- How to identify "Edge Switch"?
- What are potential benefits over Mode-2?

Path 2b: Solve CN problem only : Flood CN

Flood CN packets on aggregated links to End Stations

- If ((dest_port_type is edge_port) && (EtherType == CN))
 - Flood packet to all team_port_members
- Else
 - Forward packet to dest_port
- End Stations can potentially use Flow_id to discard CNs on "wrong" ports
- How to identify "Edge Switch"?
- Requires broadcast of a unicast packet
- Data path is still unsolved

- 802.3ad problem exists prior to CN
- Look for real solution?
- Disassociate FlowId from Link Aggregation discussion

