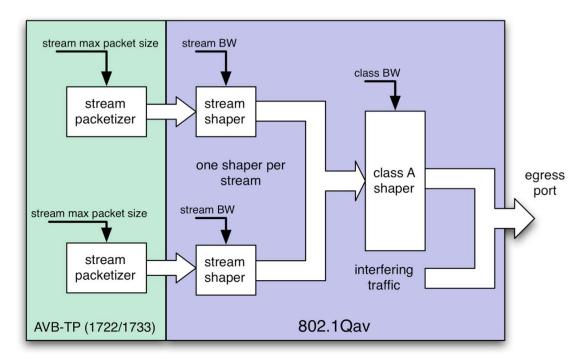
#### Worst-case latency in 802.1Qav <u>Ethernet bridges</u> (v1 – very preliminary)

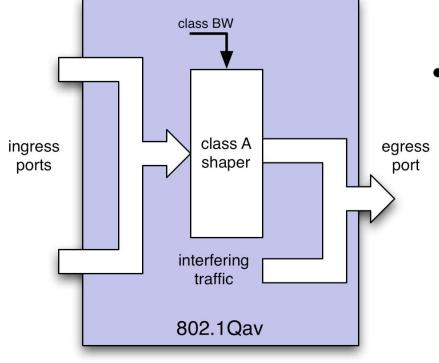
**Michael Johas Teener** 

March 16, 2008


# Notes

- This calculation is only for Class A
  - I want to make sure we understand the limits on a "2ms" latency network
  - Once we understand that, then I'll add the Class B traffic to the analysis
- The parameters to be explored include:
  - Network topology (number of bridges and number of ports on each bridge)
  - Stream packet limitations (max packet size)
- For NOW all links are only 100Mbit/sec
- All shapers are as described in Qav 0.3

## Input, output & methodology


- The input parameters to be explored include:
  - Network topology (number of bridges and number of ports on each bridge)
  - Stream packet limitations (max packet size)
- Output is worst case delay
- Looking only at first order effects
  - mention will be made of 2<sup>nd</sup> order effects that are being ignored for now

## **Talker model**



- Talker consists of transport protocol packetizers feeding into stream shapers feeding into class shaper
- Stream shapers have infinite "sendSlope"
- Sum of all stream's "idleSlope" is the class "idleSlope"
  - SRP bandwidth allocation is "idleSlope"

## **Bridge model**



- Same as a talker with no stream shapers
  - conversely, a talker can be thought of as a bunch of single stream sources each with an infinitely fast link to a bridge

## **Talker delays**

- Talker has just started to transmit a best effort frame of b bytes
- There are *m* streams, each with a max packet size of *s<sub>j</sub>* bytes
- Egress port rate is *e* bytes/sec
- Delay is

$$\frac{\left(b + \sum_{i=1}^{m} s_i\right)}{e}$$

## **Bridge delays**

- Bridge has just started to transmit a best effort frame of b bytes
- There are *m* ports, each routing class A traffic with a max packet size of s<sub>j</sub> bytes through the egress port
- Egress port rate is *e* bytes/sec

Delay is

$$\left(b+\sum_{i=1}^{m}s_{i}\right)$$

## **Network delays**

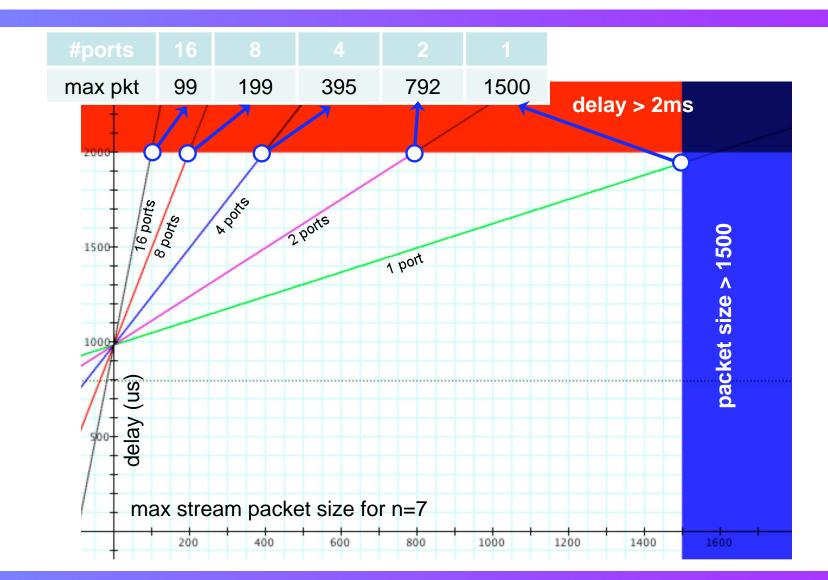
• There are *n* bridges

- so there are n+1 devices for queuing delays

- For each hop between devices there is no common stream
  - so it's possible for a stream to always be delayed by new interfering packets on each hop

• Delay is 
$$\sum_{j=0}^{n} \left( \frac{\left( b_{j} + \sum_{i=1}^{m} s_{ij} \right)}{e_{j}} \right)$$

## Simplification


- all links are 100 Mbit/sec  $(e_i)$
- worst case best effort interfering packet of 2048 bytes (b<sub>j</sub>)
- all other class A packets are the same size  $(s_{ij})$
- the talker launches *m* streams and each bridge has *m*+1 ports
- so, delay is

$$\frac{(n+1)(b+ms)}{e} = \frac{(n+1)(2048+ms)}{100}$$

### 2<sup>nd</sup> order effects

- Cumulative "bunching"?
  - I don't think this is a problem since I'm forcing the interfering traffic on each hop to be uncorrelated (not following the measured stream on any other link)

#### Max network delays



31 Jan 2008

**AVB Standards Status** 

## Conclusions

- Class 5 max packet size directly effects the latency, as does the number of bridges in a path from talker to listener, as does the number of ports on those bridges
  - We have been assuming 7 hops is a good limit for class A at 2ms max delay.
  - So we need to assume limits for the number of ports on the bridges and the max packet size
- For a 7 hop 100 Mbit/sec Ethernet configuration, we should perhaps assume 8 port bridges are a maximum
  - If so, then class 5 packets need to be no larger than about 200 bytes
- SRP \*can\* allow larger packets, but it will have to be ready to deny requests even when there is bandwidth available on a egress port
  - because the latency budget of "250 usec/bridge" is used up