
DCBX Base Protocol Rev 1.0  

 
Task Group Data Center Bridging 
Revision 1.0 
Author Manoj Wadekar (Qlogic), et al 

 

 
DCB Capability Exchange Protocol 

Base Specification 
 

Rev 1.0 
 
 
 
 
 

1  

 



DCBX Base Protocol Rev 1.0  

Modification History 
 

Rev Originator Comment 
1.0 Manoj Wadekar Initial Submitted Version 
   
 
 
 
 
 

2  

 



TABLE OF CONTENTS 
TABLE OF CONTENTS............................................................................................3 

LIST OF TABLES......................................................................................................3 

LIST OF FIGURES ...................................................................................................4 

Terminology.........................................................................................................4 

Related Documents............................................................................................5 

Change History ....................................................Error! Bookmark not defined. 

1. Authors........................................................................................................5 

2. Introduction ................................................................................................7 
2.1 Goals...................................................................................................................7 
2.2 Types of DCB Parameters..................................................................................9 
2.3 DCBX and LLDP...................................................................................................9 

2.3.1 LLDP Modifications _____________________________________________________11 
2.4 DCBX Operation...............................................................................................13 

2.4.1 DCBX TLV Format ______________________________________________________14 
2.4.2 DCBX Control State Machine ___________________________________________15 
2.4.3 DCB Feature State Machine ____________________________________________19 
2.4.4 Manager Notifications _________________________________________________25 

3. DCB Features............................................................................................26 

3.1 Priority Group Feature .....................................................................................26 
3.1.1 Priority Group Parameters ______________________________________________26 
3.1.2 Priority Group TLV ______________________________________________________26 
3.1.3 Priority Group Parameter Comparison___________________________________27 
3.1.4 Feature Specific Behavior for Priority Group TLV __________________________27 

3.2 Priority-based Flow Control (PFC) Feature ....................................................28 
3.2.1 Priority-based Flow Control Parameters__________________________________28 
3.2.2 Priority-based Flow Control TLV__________________________________________28 
3.2.3 Priority-based Flow Control Parameter Comparison ______________________29 
3.2.4 Feature Specific behavior for PFC TLV ___________________________________29 

 
 

LIST OF TABLES 
TABLE 1 DCBX CONTROL TLV FIELDS........................................................................................................ 16 
TABLE 2 DCBX CONTROL STATE VARIABLES............................................................................................... 16 
TABLE 3 DCB FEATURE TLV HEADER FIELD DEFINITIONS ........................................................................... 19 
TABLE 4 DCBX STATE VARIABLE DEFINITIONS FOR THE DCB FEATURE STATE MACHINE............................ 21 
TABLE 5 - PRIORITY GROUP PARAMETERS .................................................................................................... 26 
TABLE 6 - PRIORITY GROUPS PARAMETER COMPARISON.............................................................................. 27 



    DCBX Base Protocol Rev 1.0  

TABLE 7 PRIORITY-BASED FLOW CONTROL .................................................................................................. 28 
 
 

LIST OF FIGURES 
FIGURE 1 - DCBX DEPLOYMENT SCENARIO ................................................................................................... 8 
FIGURE 2 - TYPES OF PARAMETERS ................................................................................................................. 9 
FIGURE 3 - LLDP FRAME FORMAT................................................................................................................ 11 
FIGURE 4 - INITIAL LLDP EXCHANGE DELAY ISSUE..................................................................................... 12 
FIGURE 5 - INITIAL FAST RETRANSMISSION OF LLDP FRAMES ..................................................................... 13 
FIGURE 6 - HIGH LEVEL DCBX TLV STRUCTURES....................................................................................... 14 
FIGURE 7 - DCBX CONTROL TLV DEFINITION ............................................................................................. 15 
FIGURE 8 - DCBX CONTROL STATE MACHINE DIAGRAM............................................................................. 18 
FIGURE 9 – DCB FEATURE TLV HEADER DEFINITION (DCBX_TLV_HEADER) ............................................ 19 
FIGURE 10 – GENERIC DCB FEATURE TLV .................................................................................................. 19 
FIGURE 11 - DCB FEATURE STATE MACHINE ............................................................................................... 24 
FIGURE 12 - PRIORITY GROUP PARAMETERS STRUCTURE ............................................................................. 27 
FIGURE 13 - PRIORITY-BASED FLOW CONTROL PARAMETERS STRUCTURE................................................... 29 

 Terminology 
Term Description 

BCN Backward Congestion Management 
CM Congestion Management 

DCB Data Center Bridging 
DCBX DCB Capability Exchange Protocol 
LLDP Link Layer Discovery Protocol, IEEE802.1AB 

LLDPDU An LLDP PDU 
NIC Network interface controller 
OS Operating System. 
OUI Organizationally Unique Identifier 
PDU Protocol Data Unit 
PFC Priority-based  Flow Control (same as Per Priority Pause or Class Based Flow 

Control) 
PG Priority Groups 
RX Receive 

SNMP Simple Network Management Protocol 
TLV Type Length Value 
TTL Time to Live 
TX Transmit 

     4

 



    DCBX Base Protocol Rev 1.0  

 
 

Related Documents 
DCB Feature Specifications 
Definition for new PAUSE function – v1.2 
http://www.ieee802.org/1/files/public/dos2007/new-cm-barrass-pause-

proposal.pdf  
Packet Scheduling with Priority Grouping and Bandwidth Allocation for DCB 
Networks  
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-ets-proposal-0608-
v1.01.pdf  

 

 

 

1. Authors 
The following people, with company affiliations, have contributed to the preparation of 
this proposal: 
 
Amit Shukla – Juniper  
Anoop Ghanwani - Brocade 
Anjan – Cisco 
Anthony Faustini - Cisco 
Asif Hazarika – Fujitsu 
Awais Nemat – Marvell  
Bruce Klemin – Qlogic 
Brice Kwan - Broadcom 
Claudio DeSanti- Cisco 
Craig W. Carlson - QLogic 
Dan Eisenhauer – IBM 
Danny J. Mitzel - Brocade 
David Peterson – Brocade 
Diego Crupniokoff – Mellanox 
Dinesh Dutt - Cisco 
Douglas Dreyer - IBM 
Ed McGlaughlin – Qlogic 
Eric Multanen - Intel 
Gaurav Chawla - Dell 
Glenn - Brocade 
Hemal Purohit - QLogic 
Hugh Barrass – Cisco 
Ilango Ganga - Intel 

     5

Irv Robinson - Intel 

http://www.ieee802.org/1/files/public/docs2007/new-cm-barrass-pause-proposal.pdf
http://www.ieee802.org/1/files/public/docs2007/new-cm-barrass-pause-proposal.pdf
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-ets-proposal-0608-v1.01.pdf
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-ets-proposal-0608-v1.01.pdf


    DCBX Base Protocol Rev 1.0  

J. R. Rivers – Cisco 
Jeelani Syed - Juniper 
Jeffrey Lynch - IBM 
Jim Larsen - Intel 
Joe Pelissier - Cisco 
John Hufferd – Brocade 
John Terry – Brocade 
Krishna Doddapaneni - Cisco 
Manoj Wadekar – Qlogic 
Menu Menuchehry - Marvell 
Mike Ko – IBM 
Mike Krause - HP 
Parag Bhide - Emulex 
Pat Thaler - Broadcom 
Ravi Shenoy - Emulex 
Renato Recio - IBM 
Robert Snively - Brocade 
Roger Hathorn - IBM 
Sanjaya Anand – Qlogic 
Sanjay Sane – Cisco 
Shreyas Shah - PLX 
Silvano Gai - Cisco 
Stuart Berman - Emulex 
Suresh Vobbilisetty - Brocade 
Taufik Ma - Emulex 

     6

Uri Elzur - Broadcom 



    DCBX Base Protocol Rev 1.0  

2. Introduction 
This document details the data center discovery and capability exchange protocol 
(DCBX) that is used by DCB devices to exchange configuration information with directly 
connected peers.   The protocol may also be used for misconfiguration detection and for 
configuration of the peer. 
 
This document describes the base protocol which comprises a control state machine 
and a generic feature state machine.   For each feature that is to be supported by 
DCBX, the following information must be provided: 

• The parameters to be exchanged; 
• How the parameters are used for detecting misconfiguration; 
• What action needs to be taken when an error is detected; 

 
This document also lists the above information for the following features: 

- Priority Groups (PG) 
- Priority-based Flow Control (PFC) 

 
In future, it is likely that additional features may be added to DCBX. 

2.1 Goals 
The following lists the goals of DCBX. 
 

Discovery of DCB capability in a peer: DCBX is used to know about the capabilities of 
the peer device. It is a means to know if the peer device supports a particular feature 
such as Priority Groups (PG) or Priority-based Flow Control (PFC).  For example, it can 
be used to determine if two link peer devices support PFC. 

 
DCB feature misconfiguration detection: DCBX can be used to detect 
misconfiguration of a feature between the peers on a link.  Misconfiguration 
detection is feature-specific because some features may allow asymmetric 
configuration.   
 
Peer configuration of DCB features: DCBX can be used by a device to perform 
configuration of DCB features in its link peer. The goal is to provide basic peer to peer 
configuration through DCBX in the initial version. Future versions of DCBX or another 
higher layer application can build on top of this to provide more complex 
configuration distribution mechanisms.  
 

 
Figure 1 shows a deployment scenario for a network that is using DCBX.  DCBX capable 
links exchange DCB capability and configuration, and conflict alarms are sent to the 
appropriate management stations.  As an example, a boundary is shown indicating 
which devices support PFC and which do not. 

     7

 



    DCBX Base Protocol Rev 1.0  

Switch Management

Server Management

3

DCBX

DCBX

DCBX

DCBX

DCBX DCBX

Co
nf

lic
t a

la
rm

Conflict 
alarm

DCBX

DCBX

DCBX

DC
BX

PFC 
enabled 
region

 

     8

Figure 1 - DCBX Deployment Scenario 



    DCBX Base Protocol Rev 1.0  

 

2.2 Types of DCB Parameters 
Each DCB feature has a set of parameters.  DCB parameters are classified into two 
broad categories: 
 

- Exchanged parameters: Exchanged parameters are sent to the peer. Within 
these parameters, there are two sub-groups: 
1. Administered parameters: These are the configured parameters. 
2. Operational parameters: This is the operational state of the related 

administered parameter. Operational state might be different than the 
administrative/configured state, primarily as a result of the DCBX exchange 
with the peer. Operational parameters accompany only those administered 
parameters where there is a possibility that the operational state is different 
from what was set by their administrator. The operational parameters are 
included in the the LLDP message only for informational purposes. It might be 
used by a device to know what is the current operational state of the peer. 

- Local parameters: Local parameters are not exchanged in LLDP messages. 
 
Figure 2 shows the exchanged parameters that are sent to each peer via LLDP 
messages. 
 

DCB MIB

Device A Device B

Local 
parameters

Exchanged 
parameters

DCB MIB

Exchanged 
parameters

Local 
parameters

Operational 
parameters

Exchanged parameters

Ethernet Link

LLDP Messages

Operational 
parameters

 
Figure 2 - Types of Parameters 

 

2.3 DCBX and LLDP 
DCBX uses Link Layer Discovery Protocol (LLDP) to exchange parameters between two 
link peers. LLDP is a unidirectional protocol. It advertises connectivity and management 
information about the local station to adjacent stations on the same IEEE 802 LAN.  
 
LLDP PDUs carry Type Length Values (TLVs) classified as 

1. Mandatory TLVs: Chassis ID, Port ID, TTL, End of LLDPDU. 
2. Optional TLVs: Basic Management, 802.1 and 802.3 Organizationally Specific. 

 

     9

DCB exchanged parameters are packaged into Organizationally Specific TLVs. The OUI 
used for the DCBX TLV is 0x001B21 (IEEE OUI will be used when it becomes available). 



    DCBX Base Protocol Rev 1.0  

Depending on the amount of data required for all features, one or more TLVs, with 
different sub-types, are defined for DCBX.  Within the DCBX TLVs, sub-TLVs are defined for 
each feature carried by that TLV.   
 
A device capable of any DCB feature must have DCBX enabled by default with an 
option for DCBX to be administratively disabled. 
 
DCBX is expected to operate over a point to point link.  If multiple LLDP neighbors are 
detected, then DCBX behaves as if the peer’s DCBX TLVs are not present until the 
multiple LLDP neighbor condition is no longer present.  An LLDP neighbor is identified by 
its logical MAC Service Access Identifier (MSAP).  The logical MSAP is a concatenation of 
the chassis ID and port ID values transmitted in the LLDPDU. 
 
LLDP gives administrator control to enable/disable the protocol independently on the Rx 
side and Tx side. Since DCBX is an acknowledged protocol which uses LLDP, for the 
protocol to operate correctly both LLDP Rx and Tx must be enabled on the interface on 
which DCBX runs.  The behavior of DCBX is as follows with respect to LLDP Rx/Tx admin 
state controls: 
 
* If either of Rx or Tx is in disable state, DCBX is disabled on the interface. Neither the 
control nor feature state machines should run. The LLDPDU's that are generated from this 
interface do not have any DCBX TLVs. If the peer sends DCBX TLVs they should be 
ignored as far as the DCBX state machines are concerned. 
     
* When DCBX is currently running and LLDP TX is disabled, then according to the LLDP 
specification, a shutdown LLDPDU is sent.  When the peer receives this PDU, DCBX is 
determined to be disabled on the peer. This is equivalent to DCBX TLV TTL expired in the 
Control State machine and Rx.Feature.present() = FALSE in the Feature state machine. If 
for some reason this frame is lost, then DCBX depends on standard rxInfoTTL expiry of the 
peer's LLDP TLV's. 
 
* When DCBX is currently running and LLDP Rx is disabled, then all DCBX TLV's including 
the control TLV should be withdrawn from the LLDP PDUs that the interface generates. 
The peer's behavior should be the same as discussed in the previous case. 

     10 

 



    DCBX Base Protocol Rev 1.0  

DA SA Ethtype
0x88CC

LLDP PDU

Chassis ID
TLV

Port ID
TLV

Time To 
Live

Optional
TLV

Ethernet
Frame format

PROTCOL TLV

Type
7 bits

Length
9 bits

Information
0 - 511 octets General TLV structure

PROTOCOL
TLV

End of 
LLDPDU TLV

TLV 
Type=127

Length
9 bits

OUI
3 octets

Subtype 
1 octet

Information
0 – 507 octets

Org TLV Header Feature 
Sub-TLV

Feature 
Sub-TLV

Feature 
Sub-TLV

Organizationally Specific 
TLV structure

LLDP PDU 
format

PROTOCOL 
Control Sub-TLV

 

Figure 3 - LLDP Frame Format 

2.3.1 LLDP Modifications 
This section lists the proposed modifications to the LLDP protocol for use with DCBX. IEEE 
802.1AB REV project is currently working on these modifications. Once standard is 
published for IEEE 802.1AB-REV, DCBX specification will be appropriately modified.  

2.3.1.1 Fast initial LLDP Transmissions 
The current LLDP protocol can result in a long delay before DCB parameters are 
exchanged and synchronized. 
 
LLDP transmits a frame after: 

- Transmit countdown timer expiration (recommended default value = 30 seconds) 
and txDelay expiration, OR 

- A condition (status or value) change in one or more objects in LLDP local system 
MIB. (LLDP local system MIB contains only the objects that are sent in LLDP frames. 
This MIB could be merely a subset of a larger MIB). 

 

     11 

After initialization, an LLDP frame is transmitted (considering the initialization as a status 
change). 



    DCBX Base Protocol Rev 1.0  

 
 
An initial LLDP message might not be received by the peer due to different times at 
which their initialization completes (see Figure 4). 
 

PHY Link up

LLDP initialized

PHY Link up

LLDP initialized

Device A Device B

Peer parameters 
received

Peer parameters 
received

LLDP messages

X

 
Figure 4 - Initial LLDP Exchange Delay Issue 

In order to overcome this problem, the following modification is proposed.  
The interval for the LLDP transmission time to refresh the timer (msgTxInterval) is set to one 
second for the first five transmissions after LLDP initialization and then reset to the 
administratively configured value. The txDelay (minimum delay between successive 
transmitted LLDP frames) is also set to one second as a DCBX default.  This ensures that at 
start up both devices receive peer parameters within a short timeframe as shown in 
Figure 5. 

     12 

 



    DCBX Base Protocol Rev 1.0  

PHY Link up

LLDP initialized

PHY Link up

LLDP initialized

Device A Device B

Peer parameters 
received Peer parameters 

received

LLDP Messages
X
X

 
Figure 5 - Initial Fast Retransmission of LLDP Frames 

Each time LLDP is initialized, such as link up, LLDP enters this fast transmission mode.  LLDP 
operates in its normal transmission mode at all other times. 
 

2.4 DCBX Operation 
DCBX is defined as a DCBX control state machine and a set of DCB feature state 
machines.  The DCBX control state machine handles ensuring that the two DCBX peers 
get in sync by exchanging LLDPDUs after link up or following a configuration change.  
The DCB feature state machines handle the local operational configuration for each 
feature by comparing and synchronizing with the peer’s feature settings. 
 

     13 

 



    DCBX Base Protocol Rev 1.0  

2.4.1 DCBX TLV Format 
Information about the DCBX control state and DCB feature configuration are exchanged 
with the peer in DCBX TLVs that are transmitted via LLDP PDUs.  Figure 6 shows the 
general structure of the organizationally specific DCBX TLV.  The details of each sub-TLV 
are covered in the remainder of the document.     
 

 

Figure 6 - High Level DCBX TLV Structures 

 
The DCBX Control Sub-TLV and the set of Feature Sub-TLVs can be arranged in any order 
within the DCBX TLV.  Duplicate Sub-TLV’s (such as more than one Sub-TLV for the same 
feature) are not allowed.  Duplicates are handled as a configuration error for the 
feature.  A duplicate DCBX Control TLV causes an error for all features. 
The DCBX sub-TLVs follow the same format as an LLDP TLV – having type, length and 
information fields.  The type field is meaningful within the context of a DCBX TLV and the 
length specifies the number of octets in the information portion of the sub-TLV.  
 
Figure 6 shows OUI=001B21 that is offered by Intel Corp. for use by all the parties using 
pre-standard version. Once IEEE 802.1 defines the protocol, appropriate OUI needs to be 
used as defined by IEEE standard. 
 

2.4.1.1 Bit and Octet Ordering Conventions 
DCBX uses the same bit and octet ordering conventions as LLDP. 
 

[The DCBX TLV] contain[s] an integral number of octets. The 
octets in [a DCBX TLV] are numbered starting from one and 
increasing in the order they are put into the LLDP frame. The 
bits are numbered from zero to seven, where zero is the low-order 
bit.   
 
When consecutive bits within an octet are used to represent a 
binary number, the highest bit number has the most significant 
value. When consecutive octets are used to represent a binary 
number, the lower octet number has the most significant value. 
All TLVs respect these bit and octet ordering conventions, thus 
allowing communications to take place. 

 
In the details that follow, the following data types are used to define structures which 
describe the elements of DCBX sub-TLVs: 
 

     14 

• u32 - unsigned 32 bit integer 



    DCBX Base Protocol Rev 1.0  

• u16 - unsigned 16 bit integer 
• u8 - unsigned 8 bit integer 

 
Elements listed first in a structure have lower octet numbers then subsequent elements.  
Bit fields within an element occupy the highest to lowest order bits of the element in the 
order they are listed.  The following structure shows an example. 
 

 
 
 

2.4.2 DCBX Control State Machine 
The DCBX Control state machine uses the DCBX Control sub-TLV to exchange information 
with the peer.  In addition, it maintains some additional local state variables to manage 
the state machine operation.  The TLV and state variables are defined in the sections 
that follow. 

2.4.2.1 DCBX Control TLV 
Figure 7 shows the DCBX Control TLV. 
 

 
Figure 7 - DCBX Control TLV Definition 

     15 

struct example_tlv { 
    u16 type         :7;     // high order bit field in u16 element 
    u16 length       :9;     // low order bit field in u16 element 
    u32 fieldA       :8;     // highest order bit field in u32 element 
    u32 fieldB       :8;     
    u32 fieldC       :3;            
    u32 fieldD       :13;    // lowest order bit field in u32 element    
};     
 
SIZE = 6 octets 



    DCBX Base Protocol Rev 1.0  

 
The following table lists the fields in the DCBX Control TLV. 

Table 1 DCBX Control TLV Fields 

Field Field-Type Range Description 
Feature-
Type 

Integer N/A Type code of the DCBX Control 
TLV. 

Length Integer N/A Length of the DCBX Control sub-
TLV payload (not including the 
Type and Length fields).  The 
length is less than the maximum 
possible value (511) as this TLV is 
packaged inside the DCBX TLV 
along with other feature TLV’s. 

Oper 
Version 

Integer 0..255 Operating version of the DCBX 
protocol.  The system adjusts as 
needed to operate at the highest 
version supported by both link 
partners. 

Max 
Version 

Integer 0..255 Highest DCBX protocol version 
supported by the system. Version 
numbers start at zero.  The DCBX 
protocol must be backward 
compatible with all previous 
versions. 

SeqNo Integer  0 .. 
(232 –1) 

A value that changes each time 
an exchanged parameter in one 
or more of the DCB feature TLV’s 
changes.   

AckNo Integer 0 .. 
(232 –1) 

The SeqNo value from the most 
recent peer DCBX TLV that has 
been handled.  This 
acknowledges to the peer that a 
specific SeqNo has been 
received. 

 
 

2.4.2.2 DCBX Control State Variables 
The following table lists the local state variables used to maintain the DCBX Control state 
machine. 

Table 2 DCBX Control state variables 

     16 

State 
Variable 

Type Range Description 

RcvdAckNo Integer 0 .. 
(232 –1) 

The ‘AckNo’ from the most 
recent peer DCBX TLV that 
has been handled.  This is an 
acknowledgement from the 
peer that a specific SeqNo 



    DCBX Base Protocol Rev 1.0  

has been received.  
NoDCBXTLV
Received 

Boolean TRUE/FALSE This flag is set when 
somethingChangedRemote 
event is received from LLDP 
and Remote MIB indicates 
empty DCB TLVs 

DCBXFeatur
eUpdate 

Boolean TRUE/FALSE Indicates any change in 
DCBX Feature 

2.4.2.3 DCBX Control State Machine 
In addition to the TLV fields and state variables previously described, the DCBX Control 
state machine uses the following mechanisms: 
 

• somethingChangedLocal – this is an indication from the DCBX state machine to 
the LLDP module that there is a new DCBX TLV to transmit. 

• somethingChangedRemote – this is an indication from the LLDP module to the 
DCBX Control state machine that there is new information from the peer (such as 
new DCBX TLV or data has expired). 

• DCBXFeatureUpdate – the DCBX Control state machine provides this indication to 
the DCB Feature state machines after it has received the 
somethingChangedRemote indication. 

• The SeqNo,  DCBXFeatureUpdate and RcvdAckNo variables are visible to the DCB 
Feature state machines.  

 
Figure 8 shows the operation of the DCBX Control state machine.  Note that the diagram 
is defined using an infinite loop model (such as no waiting).  Implementations might use 
event waiting mechanisms as long as the function of the state machine is preserved. 
 
A few notes concerning the notations used in Figure 8: 
 

• DCBX Control TLV fields and state variables are used directly such as SeqNo) 
• Variables from the Feature state machines are identified by pre-pending Feature 

to the variable:  For example,  Feature.Syncd refers to a variable called Syncd 
from a Feature state machine. 

     17 

• TLV fields received from the peer are identified as:  Rx.< variable> - i.e. ‘Rx.SeqNo. 



    DCBX Base Protocol Rev 1.0  

 

  

Figure 8 - DCBX Control State Machine Diagram 

 
Commentary on the DCBX Control state machine diagram by reference label (Dx): 
 

• UpdateDCBXTLV: “Capture TLV” term implies inclusion of feature TLV to be 
indicated to LLDP for transmission, if the feature is advertised. 

• PeerNotAdvertiseDCBX  If the DCBX TLV from the peer has expired, then the local 
side resets similar to a link up.  This is a different case than an actual link down, 
which would cause this state machine to exit. 

• D13:  The peer has sent a Control TLV with a new sequence number.  Send a new 
Control TLV with an updated AckNo field.  

SeqNo = 0; 
AckNo = 0; 

RcvdAckNo = 0; 
OperVersion = 
MaxVersion; 

Link up 

LinkUp 

Do Nothing; 

DWait 

UCT SeqNo == RcvdAckNo && 
Any Feature !Syncd SeqNo++; 

somethingChangedLocal = TRUE; 
Capture all DCBX Feature TLVs 

For all Features { 
FeatureSyncd = FeatureSyncd || !FeatureAdvertise}; 

UpdateDCBXTLV 

SeqNo = 0; 
AckNo = 0; 

RcvdAckNo = 0; 
OperVersion = MaxVersion; 

DCBXFeatureUpdate = TRUE; 

PeerNotAdvertiseDCBX 
(SeqNo != RcvdAckNo || All Features Syncd) && 
somethingChangedRemote && NoDCBXTLVReceived 

OperVersion =  
min(Rx.MaxVersion, MaxVersion); 
somethingChangedLocal = TRUE; 

UpdateOperVersion 

(SeqNo != RcvdAckNo || All Features Syncd) && 
somethingChangedRemote && 
!NoDCBXTLVReceived && 
OperVersion != min(Rx.MaxVersion, MaxVersion) 

RcvdAckNo = Rx.AckNo; 
DCBXFeatureUpdate =TRUE; 

ProcessPeerTLV 

(SeqNo != RcvdAckNo || All Features Syncd) && 
somethingChangedRemote && 
!NoDCBXTLVReceived && 
OperVersion == min(Rx.MaxVersion, MaxVersion) && 
OperVersion == Rx.OperVersion 

AckNo = Rx.SeqNo; 
somethingChangedLocal=TRUE; 

AckPeer

AckNo != Rx.SeqNo AckNo == Rx.SeqNo 

UCT

UCT 

UCT 

UCT

     18 



    DCBX Base Protocol Rev 1.0  

2.4.3 DCB Feature State Machine 
This section defines the operation of the DCB Feature state machine.  The configuration 
of each DCB feature is managed by that feature’s DCB Feature state machine. All DCB 
Feature state machines operate in the same manner. 

2.4.3.1 DCB Feature TLV 
Figure 9 shows the common TLV header structure used for all DCB feature sub-TLV’s.   
Feature specific TLV parameters are pre-pended with this header. 
 

16 bits

Type Length

Max_VersionOper_Version

E
N

E
RW Reserved Sub_Type

EN=Enabled
ER = Error
W=Willing

SIZE=6 Octets  
Figure 9 – DCB Feature TLV Header Definition (DCBX_tlv_header) 

 
Figure 10 shows a generic DCB Feature TLV structure.  The details of each feature specific 
parameter structure are defined in the upcoming DCB Feature sections. 
  

 
Figure 10 – Generic DCB Feature TLV  

 
 
The following table lists the fields in the DCB Feature TLVs that are used to define the 
operation of the DCB Feature state machine. 

Table 3 DCB Feature TLV header field definitions 

Field Type Range Description 
Type Integer 2..127 Type code of the DCB Feature.  

Following is a list of defined 
types: 
1 – DCBX Control (not a 
feature) 
2 – Priority Groups 

     19 

struct PROTCOL_feature_tlv { 
    struct DCBX_tlv_header h; 
    struct DCBX_feature_cfg desired_cfg; 
};    
 
SIZE = 6 + sizeof(struct DCBX_feature_cfg) 
 



    DCBX Base Protocol Rev 1.0  

     20 

3 – Priority-based Flow Control 
Length Integer N/A Length of the DCB Feature 

sub-TLV payload (not including 
the Type and Length fields).  
The length is less than the 
maximum possible value (511) 
as this TLV is packaged inside 
the DCBX TLV along with other 
feature TLV’s. 

Oper 
Version 

Integer 0 .. 255 Operating version of the 
feature.  The system adjusts to 
operate at the highest version 
supported by both link 
partners. 

Max 
Version 

Integer 0 .. 255 Highest feature version 
supported by the system. 
Version numbers start at zero.  
The feature must be backward 
compatible for all previous 
versions. 

Enable Boolean Truth 
value 

Locally administered 
parameter that indicates 
whether the DCB feature is 
enabled or not. 

Willing Boolean Truth 
value 

Locally administered 
parameter that indicates 
whether this feature accepts 
its configuration from the peer 
or not.  When set to TRUE, the 
system uses the DesiredCfg 
supplied by a !Willing peer as 
the OperCfg.  A system set to 
Willing must be capable of 
accepting any valid 
DesiredCfg for the feature 
from the peer.  If both local 
and remote systems have the 
same value for the Willing flag, 
then the local DesiredCfg is 
used and the operational 
outcome of the exchange is 
determined by the 
Compatible method of the 
feature. 

Error Boolean Truth 
value 

Indicates that an error has 
occurred during the 
configuration exchange with 
the peer.  Error is also set to 
TRUE when the Compatible 
method for the feature fails.  
The Feature turns OperMode 



    DCBX Base Protocol Rev 1.0  

to FALSE if either the local or 
remote Error flag is set to TRUE. 
Duplicate TLV’s for the same 
Type/SubType or the DCBX 
Control TLV also causes Error to 
be set to TRUE. 
 
System errors are not reflected 
on this Error Flag. 

SubType Integer 0..255 Some Feature TLVs may define 
subtypes that are specific to 
that feature. When subtypes 
are not defined by a specific 
feature, subtype field should 
be set to zero   
 
In general, the Type and 
SubType, taken together, 
identify a unique feature that is 
managed by an instance of 
the DCB Feature State 
Machine. 

    
NOTE: A node does not have to support 8 classes of service in order to be considered 
capable of accepting any valid DesiredCfg. It may fulfill the requirements of the 
configuration by combining priorities or priority groups requiring similar service (e.g. PFC 
configuration and bandwidth management) into a traffic class. Details about decision to 
combine various priorities in single traffic class is out of scope of this document.  
 
NOTE: The TLV always carries the DesiredCfg.  A system uses its own DesiredCfg, the 
peer’s DesiredCfg (PeerCfg) and the other bits (willing, error, etc.) to derive its OperCfg.  
When both sides advertise, they should be able to derive the same OperCfg. 

2.4.3.2 DCB Feature State Variables 
The following table lists the additional state variables used to maintain each DCB Feature 
state machine. 

Table 4 DCBX state variable definitions for the DCB Feature state machine 

     21 

State Variable Type Range Description 
Advertise Boolean Truth 

value 
Locally administered 
parameter that indicates 
whether this feature is 
exchanged in the DCBX 
TLV.  When Advertise is 
False, received TLVs for this 
feature are ignored. 

OperMode Boolean Truth 
value 

Operational state of the 
feature. 

FeatureSeqNo Integer 0 .. 
(232 –1) 

When Syncd is False, this 
indicates the value that 



    DCBX Base Protocol Rev 1.0  

SeqNo must become equal 
to before Syncd can 
become True.  

Syncd Boolean Truth 
value 

Indicates whether the 
current DesiredCfg has 
been received by the peer. 

OperCfg Structure NA The actual operating 
configuration of the 
feature.  Derived  from 
either DesiredCfg or 
PeerCfg. 

PeerCfg Structure NA The DesiredCfg of the peer 
– as received in a DCBX TLV 
from the peer. 

DesiredCfg Structure NA This represents the locally 
configured values of the 
feature specific 
configuration. 

PeerWilling Boolean Truth 
value 

The Willing state of the peer 
– as received in a DCBX TLV 
from the peer. 

LocalParamete
rChange 

Boolean Truth 
Value 

Indicates that a 
configurable DCB Feature 
TLV field or state variable 
has been modified on the 
local system. 

2.4.3.3 DCB Feature State Machine 
In addition to the TLV fields and state variables previously described, the DCB Feature 
state machine uses the following mechanisms: 
 

• DCBXFeatureUpdate – this represents an indication from the DCBX Control state 
machine that there is new information from the peer (such as a new DCBX TLV or 
data has expired). 

• The Syncd variable from each DCB Feature state machine is visible to the DCBX 
Control state machine. 

• Each feature has a method called Compatible which is used to compare the 
DesiredCfg and PeerCfg. 

• Each feature retrieves LocalParams from non-volatile storage or sets them to 
default values at link up. 

• LocalParameterChange indicates that a configurable DCB Feature TLV field or 
state variable has been modified on the local system. 

• The SeqNo,  DCBXFeatureUpdate and RcvdAckNo are control state machine 
variables that are visible to the DCB Feature state machines.  

• Each feature has a method called SetCfg which accepts two parameters. This 
method is called to set operational parameters for the given feature. First 
parameter to this method provides configuration parameters to be used by the 
method. Second parameter is a Boolean.  

     22 

 



    DCBX Base Protocol Rev 1.0  

Figure 11 shows the operation of the DCB Feature state machine.  Note that the figure is 
defined using an infinite loop model (such as no waiting).  Implementations might use 
event waiting mechanisms as long as the function of the state machine is preserved. 
 
A few notes concerning the notations used in Figure 11: 
 

• TLV fields and state variables are used directly (e.g. SeqNo) 

     23 

• TLV fields received from the peer are identified as:  Rx.<variable> -  such as 
Rx.SeqNo. 



    DCBX Base Protocol Rev 1.0  

  
 

!(LocalPrarmeterChange && Syncd) &&
Advertise && DCBFeatureUpdate &&
Rx.FeaturePresent() && 
(Syncd || 
(RcvdAckNo == FeatureSeqNo))
&&OperVersion == 

min(Rx.FeatureMaxVersion, MaxVersion) 
&&OperVersion != Rx.FeatureOperVersion

Syncd = !(Advertise || LocalParamsAdvertise);
Enabled = LocalParamsEnabled;

Advertise = LocalParamsAdvertise;
Willing = LocalParamsWilling;

DesiredCfg = LocalParamsCfg;
FeatureSeqNo = SeqNo + 1;

LocalParameterChange=FALSE;

SetLocalParameters

OperCfg = SetCfg(DesiredCfg, Enabled);
OperMode = Enabled;

Error = FALSE;

NoAdvertise

Do Nothing;

FWait

UCT

LocalPrarmeterChange && Syncd

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBFeatureUpdate &&
NoDCBXTLVReceived

UCT

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = FALSE;
FeatureSeqNo = SeqNo + 1;

Error = TRUE;

PeerNotAdvertiseDCBX

UCT

!(LocalPrarmeterChange && Syncd)
&& !Advertise

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = TRUE;
Error = TRUE;

PeerNotAdvertiseFeature

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBFeatureUpdate &&
!NoDCBXTLVReceived &&
!Rx.FeaturePresent()

UCT

OperVersion =
Min(Rx.FeatureMaxVersion, MaxVersion);

Syncd = FALSE;
FeatureSeqNo = SeqNo + 1;

UpdateOperVersion

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBXFeatureUpdate &&
Rx.FeaturePresent() && 
(Syncd || 
(RcvdAckNo == FeatureSeqNo)) &&
OperVersion != 
min(Rx.FeatureMaxVersion, MaxVersion)

UCT

Syncd = TRUE;

PeerUpdateOperVersion

UCT

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBXFeatureUpdate &&
Rx.FeaturePresent() && 
(Syncd ||
(RcvdAckNo == FeatureSeqNo)) &&
OperVersion == 
min(Rx.FeatureMaxVersion, MaxVersion) &&
OperVersion == Rx.FeatureOperVersion

PeerCfg=Rx.FeatureCfg;
PeerWilling=Rx.FeatureWilling;

GetPeerCfg

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = !Error;
Error = FALSE;

FeatureDisabled

OperCfg = SetCfg(PeerCfg, !RxError);
OperMode = !Rx.Error;

Syncd = !Error;
Error = FALSE;

UsePeerCfg

OperCfg = SetCfg(DesiredCfg, !RX.Error);
OperMode = !Rx.Error;

Syncd = !Error;
Error = FALSE;

UseLocalCfg

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = Error;
Error = TRUE;

CfgNotCompatible

!(Enabled && 
Rx.FeatureEnabled)

FeatureSeqNo=
SeqNo+1;

ErrorChange
UCT

!Syncd

!Syncd

!Syncd

!Syncd

Syncd

Syncd

Syncd

Syncd

Enabled && Rx.FeatureEnabled &&
Willing && !PeerWilling

Enabled && Rx.FeatureEnabled &&
((!Willing && PeerWilling)
|| ((Willing == PeerWilling) 
&& Compatible(DesiredCfg, PeerCfg)))

Enabled && Rx.FeatureEnabled &&
Willing == PeerWilling
&& !Compatible(DesiredCfg, PeerCfg)

OperVersion = MaxVersion;
OperMode = FALSE;

LocalParams = Default;
Error = False;

LinkUp

UCT

Link up

!(LocalPrarmeterChange && Syncd) &&
Advertise && DCBFeatureUpdate &&
Rx.FeaturePresent() && 
(Syncd || 
(RcvdAckNo == FeatureSeqNo))
&&OperVersion == 

min(Rx.FeatureMaxVersion, MaxVersion) 
&&OperVersion != Rx.FeatureOperVersion

Syncd = !(Advertise || LocalParamsAdvertise);
Enabled = LocalParamsEnabled;

Advertise = LocalParamsAdvertise;
Willing = LocalParamsWilling;

DesiredCfg = LocalParamsCfg;
FeatureSeqNo = SeqNo + 1;

LocalParameterChange=FALSE;

SetLocalParameters
Syncd = !(Advertise || LocalParamsAdvertise);

Enabled = LocalParamsEnabled;
Advertise = LocalParamsAdvertise;

Willing = LocalParamsWilling;
DesiredCfg = LocalParamsCfg;

FeatureSeqNo = SeqNo + 1;
LocalParameterChange=FALSE;

SetLocalParameters

OperCfg = SetCfg(DesiredCfg, Enabled);
OperMode = Enabled;

Error = FALSE;

NoAdvertise
OperCfg = SetCfg(DesiredCfg, Enabled);

OperMode = Enabled;
Error = FALSE;

NoAdvertise

Do Nothing;

FWait

Do Nothing;

FWait

UCT

LocalPrarmeterChange && Syncd

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBFeatureUpdate &&
NoDCBXTLVReceived

UCT

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = FALSE;
FeatureSeqNo = SeqNo + 1;

Error = TRUE;

PeerNotAdvertiseDCBX
OperCfg = SetCfg(DesiredCfg, FALSE);

OperMode = FALSE;
Syncd = FALSE;

FeatureSeqNo = SeqNo + 1;
Error = TRUE;

PeerNotAdvertiseDCBX

UCT

!(LocalPrarmeterChange && Syncd)
&& !Advertise

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = TRUE;
Error = TRUE;

PeerNotAdvertiseFeature
OperCfg = SetCfg(DesiredCfg, FALSE);

OperMode = FALSE;
Syncd = TRUE;
Error = TRUE;

PeerNotAdvertiseFeature

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBFeatureUpdate &&
!NoDCBXTLVReceived &&
!Rx.FeaturePresent()

UCT

OperVersion =
Min(Rx.FeatureMaxVersion, MaxVersion);

Syncd = FALSE;
FeatureSeqNo = SeqNo + 1;

UpdateOperVersion
OperVersion =

Min(Rx.FeatureMaxVersion, MaxVersion);
Syncd = FALSE;

FeatureSeqNo = SeqNo + 1;

UpdateOperVersion

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBXFeatureUpdate &&
Rx.FeaturePresent() && 
(Syncd || 
(RcvdAckNo == FeatureSeqNo)) &&
OperVersion != 
min(Rx.FeatureMaxVersion, MaxVersion)

UCT

Syncd = TRUE;

PeerUpdateOperVersion

Syncd = TRUE;

PeerUpdateOperVersion

UCT

!(LocalPrarmeterChange && Syncd)
&& Advertise && DCBXFeatureUpdate &&
Rx.FeaturePresent() && 
(Syncd ||
(RcvdAckNo == FeatureSeqNo)) &&
OperVersion == 
min(Rx.FeatureMaxVersion, MaxVersion) &&
OperVersion == Rx.FeatureOperVersion

PeerCfg=Rx.FeatureCfg;
PeerWilling=Rx.FeatureWilling;

GetPeerCfg

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = !Error;
Error = FALSE;

FeatureDisabled
OperCfg = SetCfg(DesiredCfg, FALSE);

OperMode = FALSE;
Syncd = !Error;
Error = FALSE;

FeatureDisabled

OperCfg = SetCfg(PeerCfg, !RxError);
OperMode = !Rx.Error;

Syncd = !Error;
Error = FALSE;

UsePeerCfg

OperCfg = SetCfg(PeerCfg, !RxError);
OperMode = !Rx.Error;

Syncd = !Error;
Error = FALSE;

UsePeerCfg

OperCfg = SetCfg(DesiredCfg, !RX.Error);
OperMode = !Rx.Error;

Syncd = !Error;
Error = FALSE;

UseLocalCfg

OperCfg = SetCfg(DesiredCfg, !RX.Error);
OperMode = !Rx.Error;

Syncd = !Error;
Error = FALSE;

UseLocalCfg

OperCfg = SetCfg(DesiredCfg, FALSE);
OperMode = FALSE;

Syncd = Error;
Error = TRUE;

CfgNotCompatible
OperCfg = SetCfg(DesiredCfg, FALSE);

OperMode = FALSE;
Syncd = Error;
Error = TRUE;

CfgNotCompatible

!(Enabled && 
Rx.FeatureEnabled)

FeatureSeqNo=
SeqNo+1;

ErrorChange

FeatureSeqNo=
SeqNo+1;

ErrorChange
UCT

!Syncd

!Syncd

!Syncd

!Syncd

Syncd

Syncd

Syncd

Syncd

Enabled && Rx.FeatureEnabled &&
Willing && !PeerWilling

Enabled && Rx.FeatureEnabled &&
((!Willing && PeerWilling)
|| ((Willing == PeerWilling) 
&& Compatible(DesiredCfg, PeerCfg)))

Enabled && Rx.FeatureEnabled &&
Willing == PeerWilling
&& !Compatible(DesiredCfg, PeerCfg)

OperVersion = MaxVersion;
OperMode = FALSE;

LocalParams = Default;
Error = False;

LinkUp
OperVersion = MaxVersion;

OperMode = FALSE;
LocalParams = Default;

Error = False;

LinkUp

UCT

Link up

Figure 11 - DCB Feature State Machine 

     24 



    DCBX Base Protocol Rev 1.0  

 
 
Commentary on the DCB Feature state machine by reference label: 
 

• SetLocalParameters:  If multiple features experience a change and set Syncd to 
FALSE, it is possible that the first change triggers the Control state machine to send 
an LLDP message.  Additional pending changes do not get sent until the first 
change has been acknowledged (per D2 of Control state machine).  In other 
words, the SeqNo’s ratchet up and are acknowledged one value at a time.  For 
example, the AckNo from the peer could be 9, the local SeqNo is 10, and 
multiple features could be pending with FeatureSeqNo at 11.  A PDU with SeqNo 
11 is not sent until an AckNo of 10 is received. 

• NoAdvertise (any place OperCfg is set) – The hardware configuration for the 
feature takes place at the point OperCfg is set and the OperMode is set.  The 
implementation might keep track of whether or not the OperCfg and OperMode 
have actually changed and require an update to the hardware configuration. 

• CfgNotCompatible – Error is explicitly set to TRUE here to indicate that the two 
peers have a DCB configuration that is not compatible. 

• SetCfg: When second parameter (Boolean) is set to TRUE, then configuration 
passed by first parameter is applied to Operational values. When second 
parameter is “FALSE”, then behavior is feature dependent and will be defined in 
the relevant sections for each feature.  

2.4.4 Manager Notifications 
Implementations might choose to generate notifications when certain events occur.  
These types of events could include: 
 

• Conditions indicating possible configuration error –for example, when the 
Compatible method fails. 

• Conditions where the feature is not present on the peer.  This can happen when a 
device does not support a feature (not really an error) or if the feature’s Advertise 
flag is off (possible configuration error). 

• The peer stops responding – as evidenced by an LLDP timeout event (delivered 
via the somethingChangedRemote indication). 

• Each time the Error flag is set to TRUE. 

     25 

 



    DCBX Base Protocol Rev 1.0  

3. DCB Features  
This section defines the DCB Feature parameters and statistics. 

3.1 Priority Group Feature 
This section describes the details of the Priority Group feature. The Priority Groups 
Specification provides configuration tables as well as a scheduling algorithm for 
managing bandwidth for various traffic classes on a converged link.  
 
NOTE: Although it is expected that DCB devices will eventually provide scheduling 
functionality as specified in the Priority Group specification (or better), legacy 
implementations exist. To encourage wider adoption, this Priority Group Feature allows 
legacy implementations to match scheduler capabilities to the behavior implied by 
the Priority Group specification as close as possible. All DCBX implementations must be 
capable of advertising the Priority Group TLV. 

3.1.1 Priority Group Parameters 
The following table lists the Priority Group parameters.   

Table 5 - Priority Group Parameters 

Parameter Syntax Range Scope Description 
NumTCsSup
ported 

Integer 0..7 Exchanged Number of TCs 
supported by device.  
 
Number of Priority 
Groups supported by a 
device can not be 
more than number of 
TCs supported . 

Priority 
Group (PG) 
Allocation 

Table    

PG ID 
(index) 

Integer  0..15 Exchanged Queue bandwidth 
group 

PG 
Percentage 

Integer 0..100 Exchanged Percentage of link 
bandwidth 

Priority 
Allocation 

Table    

Priority 
(index) 

Integer 0..7 Exchanged  

PG ID Integer 0..15 Exchanged PG to which the priority 
belongs 

 

3.1.2 Priority Group TLV 
Figure 12 shows Priority Group parameters structure that is used in the Priority Group 
Feature TLV. 

     26 

 



    DCBX Base Protocol Rev 1.0  

  
 
 

 

Figure 12 - Priority Group Parameters Structure 

 

3.1.3 Priority Group Parameter Comparison 
Table 6 lists how the Priority Group parameters of the local and peer nodes are 
compared to determine if they match or not. 

Table 6 - Priority Groups Parameter Comparison 

Parameter Comparison 
Priority Group (PG) Allocation  
PG ID (index) Does not need to match 
PG Percentage Does not need to match 
Priority Allocation  
Priority (index) Does not need to match 
PG ID Does not need to match 
Number of TCs Supported Does not need to match 
 

3.1.4 Feature Specific Behavior for Priority Group TLV 
Priority group has specific behavior defined for SetCfg method in feature state machine. 
Based on second parameter to SetCfg function, following actions shall be taken for 
Priority Groups feature: 

     27 

struct dcbx_pg_cfg { 
 u8 pgid_0  :4;  /* PGID of priority 0 */ 
 u8 pgid_1  :4;  /* PGID of priority 1 */ 
 u8 pgid_2  :4;  /* PGID of priority 2 */ 
 u8 pgid_3  :4;  /* PGID of priority 3 */ 
 u8 pgid_4  :4;  /* PGID of priority 4 */ 
 u8 pgid_5  :4;  /* PGID of priority 5 */ 
 u8 pgid_6  :4;  /* PGID of priority 6 */ 
 u8 pgid_7  :4;  /* PGID of priority 7 */ 
 u8 pg_percentage[8];  /* Index is PGID */ 
 u8 num_tcs_supported; 
} 
SIZE = 13 octets 



    DCBX Base Protocol Rev 1.0  

- When Boolean is set to TRUE, configuration passed by first parameter to the 
method shall be applied to operational values. Feature shall be “Enabled”. 

- When second parameter (Boolean) is set to FALSE, local configuration 
(DesiredCfg) shall be applied to operational values and feature shall be 
“Enabled”. 

3.2 Priority-based Flow Control (PFC) Feature 
This section describes the details of the Priority-based Flow Control feature. This feature is 
important to provide “no-drop” packet delivery for certain traffic classes while 
maintaining existing LAN behavior for other traffic classes on converged link.  
 
NOTE: Legacy implementations that do not support Priority-based Flow Control can signal 
this by setting "Enable" to FALSE.  This effectively disables the Priority-based Flow Control 
feature at which time the peers fall back to configured 802.3x PAUSE behavior.  All DCBX 
implementations must be capable of advertising the Priority-based Flow Control TLV. 

3.2.1 Priority-based Flow Control Parameters 
Table 7 lists the Priority-based Flow Control parameters.   

Table 7 Priority-based Flow Control 

Parameter Syntax Rang
e 

Scope Description 

NumTCPFCS
upported 

Integer 1..8 Exchanged Number of TCs that 
can simultaneously 
support PFC. 

PFC Config Table    
Priority 
(index) 

Integer 0..7 Exchanged Priority value as 
defined 3-bit field by 
802.1Q 

Admin 
mode 

Integer 0..1 Exchanged Administrative PFC 
mode. 
0: Disabled 
1: Enabled 
PFC Enabled means 
that flow control in 
both directions (Rx 
and Tx) is enabled.  

 

3.2.2 Priority-based Flow Control TLV 
Figure 13 shows the Priority-based Flow Control parameters structure that is used in the 
Priority-based Flow Control Feature TLV. 
struct dcbx_pfc_cfg { 
 u8 pfc_enable;   /* bitmap of priorities with PFC enabled */ 
 u8 num_tcs_supported; 

     28 

} 



    DCBX Base Protocol Rev 1.0  

 
Figure 13 - Priority-based Flow Control Parameters Structure 

 

3.2.3 Priority-based Flow Control Parameter Comparison 
Local and remote parameter comparison for Admin Mode is done as follows: 
 

foreach (user_priority) 
{ 
    if ((localAdminMode == Disabled == remoteAdminMode)  
       || 
        (localAdminMode == Enabled == remoteAdminMode)) 
    { 
        Comparison successful – configuration match … 
    } 
    else   
    { 
        Comparison fails – configuration mismatch … 

                  break 
    } 
} 

 

3.2.4 Feature Specific behavior for PFC TLV 
PFC TLV has specific behavior defined for SetCfg method in feature state machine. 
Based on second parameter to SetCfg function, following actions shall be taken for 
Priority Groups feature: 

- When Boolean is set to TRUE, configuration passed by first parameter to the 
method shall be applied to operational values. Feature shall be “Enabled”. 

- When second parameter (Boolean) is set to FALSE then feature shall be 
“Disabled”. 

     29 

 


	1. Authors
	2. Introduction
	2.1 Goals
	2.2 Types of DCB Parameters
	2.3 DCBX and LLDP
	2.3.1 LLDP Modifications
	2.3.1.1 Fast initial LLDP Transmissions


	2.4 DCBX Operation
	2.4.1 DCBX TLV Format
	2.4.1.1 Bit and Octet Ordering Conventions

	2.4.2 DCBX Control State Machine
	2.4.2.1 DCBX Control TLV
	2.4.2.2 DCBX Control State Variables
	2.4.2.3 DCBX Control State Machine

	2.4.3 DCB Feature State Machine
	2.4.3.1 DCB Feature TLV
	2.4.3.2 DCB Feature State Variables
	2.4.3.3 DCB Feature State Machine

	2.4.4 Manager Notifications


	3. DCB Features 
	3.1 Priority Group Feature
	3.1.1 Priority Group Parameters
	3.1.2 Priority Group TLV
	3.1.3 Priority Group Parameter Comparison
	3.1.4 Feature Specific Behavior for Priority Group TLV

	3.2 Priority-based Flow Control (PFC) Feature
	3.2.1 Priority-based Flow Control Parameters
	3.2.2 Priority-based Flow Control TLV
	3.2.3 Priority-based Flow Control Parameter Comparison
	3.2.4 Feature Specific behavior for PFC TLV



