Virtual Ethernet Port Aggregator Standards Body Discussion

November 10, 2008 Paul Congdon

Traditional End-Station and Bridge

Current End-Station and Bridge

High-Level Traffic Flow diagram

If you want this...

Fine.. It's called a "bridge" and we have standards for that

If you want this...

New forwarding modes need to be defined.

Relay

• The component on the host is no longer a virtual switch, but rather a Virtual Ethernet Port Aggregator (VEPA)

Goals for a Virtual Ethernet Port Aggregator

- Provide external network visibility and management of all per VM traffic
- Partition the work between NICs and Bridges to leverage their respective strengths
- SR-IOV Virtual Functions assigned to VMs for performance (and don't break anything else)
- Correctly and efficiently solve the unicast, multicast and broadcast problems
- Allow the Hypervisor Virtual Switch to become optional
- Align with established IEEE practices

Possible Technical Approaches

Untagged

- No modifications to existing packets
- No modifications to existing Bridge tables or learning behavior
- Policy enforcement and network visibility done on a per-MAC basis
- Leverage the potential existence of a MAC address table on the NIC to "steer" and filter traffic to VMs
- Multicast/Broadcast replication is done on the NIC

Tagged

- Tag packets to explicitly indicate the Virtual Machine port
- Bridge forwards between virtual ports within the Bridge
- Policy enforcement and network visibility done on a per-Port basis
- Tag to Virtual Function mapping table "steers" traffic. No MAC address table needed on the VEPA. The tag is essentially a new address space.
- Multicast/Broadcast replication may be done on the Bridge or on the VEPA. The later requires additional tags to represent multicast groups.

Virtual Ethernet Port Aggregator

- Provides Multiple Virtual Functions (VFs) as vNICS to Virtual Machines
- Each VF is configured as individual NIC (i.e. MAC addr, Multicast addrs, Promiscuous, VLAN tags or passthru). VEPA aggregates configurations.
- 3. May support all traditional NIC features (e.g. TCP Checksum, RSS, Large Segment Send)
- 4. Does NOT perform Local Bridgeing. Not a Virtual Ethernet Bridge (VEB)
- 5. Sends all outbound traffic to the wire
- 6. Replicates mcast/bcast received traffic
- 7. VLAN aware
- 8. May provide QoS and BW management
- 9. Invoked by special Bridge mode negotiation

Note: This proposal does NOT require new tags, but could work with them.

- 1. A->C
- 2. A->E
- 3. A->Bcas
- 4. C->Bcas

Bridge Address Table

Address	Port
Α	1
В	1
С	2

- 1. A->C
- 2. A->B
- 3. A->Bcas
- 4. C->Bcas

Bridge Address Table

Address	Port
Α	1
В	1
С	2

- 1. A->C
- 2. A -> B
- 3. A->Bcast
- 4. C->Bcas

Bridge Address Table

Address	Port
Α	1
В	1
С	2

- 1. A->C
- 2. A->E
- 3. A->Bcas
- 4. C->Bcast

Bridge Address Table

Address	Port
Α	1
В	1
С	2

VEPA Multicast and VLANs

* = Bridge Port Configured for VEPA attach

Example: VEPA Address Table

Address	VLAN	VF Mask
Α	1	10000
В	2	01000
С	1	00100
D	2	00010
Е	1	00001
F	2	00001
Bcast	1	10101
Bcast	2	01011
Mcast1	1	10100
Mcast 1	2	01000
Mcast2	2	01010

VEPA Multicast and VLANs

A -> Bcast

* = Bridge Port Configured for VEPA attach

Example: VEPA Address Table

Address	VLAN	VF Mask
Α	1	10000
В	2	01000
С	1	00100
D	2	00010
Е	1	00001
F	2	00001
Bcast	1	10101
Bcast	2	01011
Mcast1	1	10100
Mcast1	2	01000
Mcast2	2	01010

☐ VLAN 1 Tag Mask = UUUUT

VLAN 2 Tag Mask = UUUUT

Untagged VEPA Limitations and Issues

Topology Restrictions

- VEPA must be directly attached to a Bridge in special 'turn-around' mode
- Multiple VEPAs can be stacked, only the Bridge port can do 'turn-around'

2. Promiscuous Mode

- VEPA needs pass all multicast, broadcast and unknowns up to a software
 VEPA above a port in promiscuous mode if multiple source MACs are above
- A vSwitch attached to a VF of a VEPA needs to know the multicast flooding behavior to avoid address learning thrash.

3. VM Recommendations

- VEPA Attached VMs should not forward between multiple vNICs (e.g. Transparent Firewall)
- VMs should be application end-points, not network forwarding devices

4. Table Sizes

- VLAN awareness requires tag and pass thru configuration
- Multicast address filters are per VLAN per VF

Untagged VEPA Work Items, Impact

- Define Port Peer Mode Negotiation (LLDP?)
 - VEPA port and terminus entities
 - VEPA port may have stackable mode (no turnaround)
- NIC vendors
 - Negotiation of VEPA mode with port peer
 - Per VF multicast membership and MAC assignment
 - OS -> Driver -> VF hardware
 - Ingress packet data replication
 - MAC/VLAN match could go to multiple VF ingress queues
- Bridge Vendors
 - Negotiation of VEPA mode with port peer
 - Define Turnaround mode on Bridge ports to VEPAs
 - Otherwise process like any other packet

Adding VEPA to Today's Solutions

Tagging Schemes

Objectives:

- Eliminate the need for the VEPA to have a MAC address table
- 2. Provide explicit indication of what VFs need to receive a packet

Note: If tagging scheme includes address encapsulation then VEPA and external Bridge need not be directly connected

Existing Candidates:

- 1. MACSec Tag (aka SecTAG)
- 2. 802.1Q Provider Tag (limited combinations)
- 3. 802.1ah Backbone Provider Tag (encapsulation)

MACSec Scheme

Advantages:

- 1. Leverages existing standard for virtual ports and tags
- 2. Already includes the ability to secure connections between VEPA and bridges

Disadvantages:

- 1. Small modifications to existing specification are required
- 2. Requires between 16-32 bytes of overhead
- 3. VEPA and bridge must be directly attached

MACSec Frames

SecTAG Control Information

```
Octet

Web ES SC SCE E C AN +

Bits 8 7 6 5 4 3 2 1

V := Version bit (v=0)

ES := End-Station

SC := SCI included

SCB := Single copy broadcast (EPON)

E := Encryption

C := Changed Text

AN := Association Number
```

- Version is 0, but if necessary could bump to 1 and define additional bits (not desired)
- End-Station bit needs to be 0 to allow SCI to be used to encode source virtual port number
- SCI must be included to allow 8 bytes of SCI to be included
- Single copy broadcast can only be used when SC is 0, but we need SC to encode port group
- Encryption may or may not be used as desired, but ICV is always included
- Changed Text is only set if the user data has been encrypted

Making MACSec work on a VEPA

- Always include a SecTAG on all traffic between VEPA and external bridge
- Always include the SCI in each SecTAG
- VEPA uses SCI to indicate internal virtual port number
- Bridge uses SCI to indicate VEPA internal port number and/or multi-destination port groups
- Multicast/Broadcast behavior (choices)
 - Bridge replicates multicast/broadcast
 - Allow Single Copy Broadcast bit to be set while including SCI from bridge
- Protocol between VEPA and bridge is needed to define multi-destination mappings and VEPA port resource limits.

Tagged Multicast/Broadcast Behavior

Bridge Replication

- Unique copy for each VF
- SCI describes dest VF
- Almost MACSec today

VEPA Replication (1)

- Unique SCI for port set
- Limited combinations
- Large bridge tables needed

VEPA Replication (2)

- Unique SCI for group
- Source VF encoded in SCI to allow source filtering
- New SCI definition

SecTAG Scheme Details

with VEPA replication

- 1. Bridge creates virtual ports per 802.1AE specification
- 2. Bridge creates Single Copy Broadcast port for each VEPA
- 3. Bridge virtual ports are associated with VEPA virtual functions
- 4. A Null cipher is desired that also eliminates ICVs.
- 5. Bridge sends single multi-destination frame to VEPA on a physical port
- 6. For VEPA to replicate broadcasts:
 - a) Bridge sends SecTAG frames with SCB bit set and SCI
 - b) SCI port identifies explicit set of VEPA ports for replication
 - c) SCI system identifier from bridge identifies VEPA and source port
- 7. VEPA must communicate to bridge virtual function configuration
 - a) Number of virtual functions
 - b) VLAN configuration
 - c) Known multicast filter membership
- 8. Bridge must communicate to VEPA multi-destination definitions

Current Specification Issues

1. Presence of ICV in all SecTAG frames implies required key management

Change: Define a null cipher that doesn't require ICVs

- 2. Single copy broadcast frames don't also allow presence of SCI Change: Remove text preventing behavior
- 3. Using port number to represent multi-destination replication requires unique combinations to eliminate sources

Change: Encode VEPA source port in SCI system identifier on frames from bridge. Or....

Change: Modify SecTAG to include additional source port field

4. Current definition of SCI system identifier does allow other uses Change: System identifier on frames from bridge could identify VEPA

VEPA Multicast and VLANs

A -> Bcast

* = Bridge Port Configured for VEPA attach

Example: VEPA Port Replication Table

SCI Port #	VF Internal Mask
1	10000000000
2	01000000000
3	00100000000
4	000100000000
5	000010000000
	0000000X0000
Ν	00000000001
N+1 (V1)	101010000000
N+2 (V2)	010110000000
M (Mcast1 V1)	10100000000
M+1 (Mcast1 V2)	01000000000
M+2 (Mcast2 V2)	01010000000

- ☐ VLAN 1 Tag Mask = UUUUT
 - VLAN 2 Tag Mask = UUUUT

Conclusion

- 1. Existing SW/HW vSwitches are not going away, so they should follow existing 802.1 standards
- Adding untagged VEPA mode allows external traffic flow with high leverage and little impact to existing solutions
- Tagged VEPA mode already exists using MACSec model requiring external bridge replication
- 4. Modest adjustments to MACSec could be done to support tagged mode VEPA replication
- 5. Yet another tagging scheme is not needed

