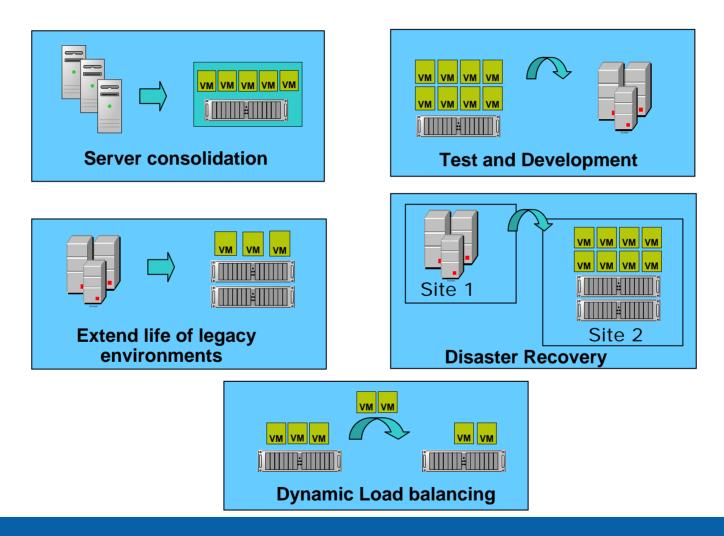


# Virtual Ethernet Bridging in Server end stations

Ilango Ganga Greg Cummings Sean Varley

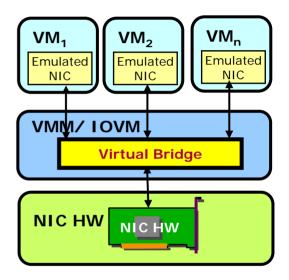
Sep 16, 2008


IEEE 802.1 interim meeting, Sep 2008, Seoul, Korea

# Outline

- Server Virtualization usage models
- Server I/O virtualization
- Virtual Ethernet Bridging evolution
  - -Server based
    - Emulated Virtual Bridging in VMM/IOVM
    - Embedded Virtual Bridging in NIC
  - -Network based
    - Virtual Bridging in Network Access Bridge
- Considerations for IEEE Standardization
- Summary



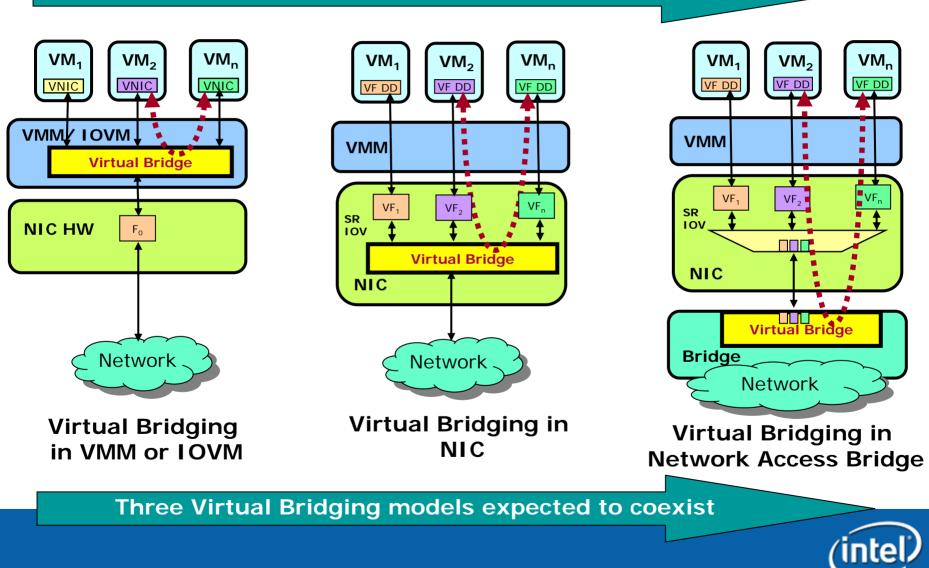

### **Server virtualization Usage Models**



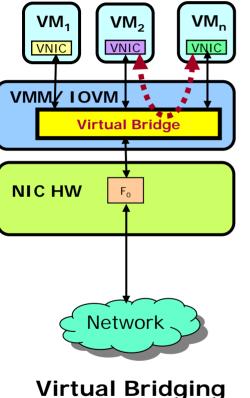


## **Server I/O Virtualization concepts**

- Virtualization is the creation of a number of different execution environments on a single computer
  - The execution environments are called Virtual Machines (VM)
  - A VM has it's own operating system and resources
- A software layer that creates and maintains the Virtual Machine environment is called a Virtual Machine Monitor (VMM)
  - VMM provides capabilities such as NIC emulation, VM migration, and Virtual bridging functionality
- Virtual bridging allows software sharing of a hardware NIC between multiple VMs
- PCI-SIG SR-IOV provides a standard mechanism for hardware sharing of I/O devices





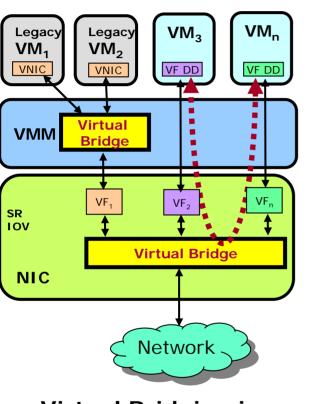


### **Virtual Bridge evolution**

2008

2009



# Virtual Bridge in VMM/IOVM

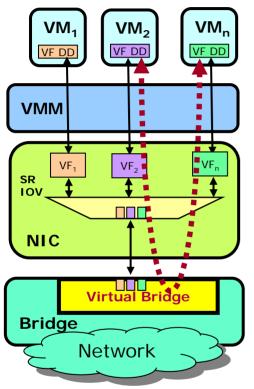



in VMM or IOVM

- Virtual Bridging for SW sharing of HW NIC
  - Provides VM to VM communication and VM to Network communication
- Virtual bridges in VMM/IOVM
  - Abstraction of an Ethernet bridge
  - Implementations have varying levels of functionality
    - Most implementations do not support spanning tree hence loops not allowed
    - Unicast, Multicast and Broadcast forwarding
    - Most implementations support VLAN
    - Some level of QoS
    - Most support "Teaming" or Link aggregation
- VM migration
  - Virtual Bridge port properties migrate to different physical servers during VM migration
  - Bridge changes are transparent to VMs because of common bridge functionality and management
- Separate administrative domain
  - Virtual bridges configured and managed as part of Server management



# **Embedded Virtual Bridge in NIC**



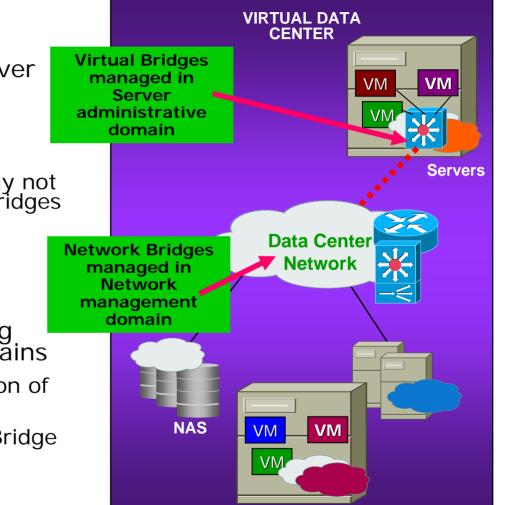

Virtual Bridging in NIC

- SR-IOV for hardware sharing of NIC
  - NIC partitioned to multiple Virtual Functions (VF)
  - VFs directly assigned to VMs
  - Eliminates software sharing layer in VMM/IOVM
- Virtual Bridging moves to NIC
  - Required for VM to VM communication and VM to external network communication
- NIC Virtual Bridge functionality
  - Varying level of functionality between NIC vendors
  - Varying level of functionality between SW Virtual Bridges and NIC Virtual Bridges
- Varying level of functionality creates problems
  - Interoperability, and Bridge Management
  - Loss of Bridge transparency for VM migration
- VM migration
  - Interoperability between NIC Bridge and Software Bridge required to ensure VM migration
- Separate administrative domain
  - Virtual Bridges configured and managed as part of Server management



#### Virtual bridging in Network Access Bridge




Virtual Bridging in Network Access Bridge

- Virtual Bridging migrates to Network Bridge
  - Network bridge aware of Virtualized Servers
- Network Access Bridge functionality
  - Both VM to VM, and VM to network communication handled by Network Bridge
- NIC virtualized and VFs directly assigned to VMs
  - NIC uplinks to be virtualized to multiple logical ports or "Virtual Ports"
- Virtualization of Network bridge ports connected to Servers
  - Server and NIC resources could have direct association with logical ports in the NIC and Bridge
- Virtual bridging in Access Bridge part Network management domain
  - Sharing of management information with Server Management
- Solutions should preserve Server virtualization capabilities such as VM migration



# **Virtual Bridge Management**

- VMM (or IOVM) and NIC based Virtual Bridges managed by Server Administrators
- Network bridges managed by Network Administrators
  - Data Center Network policies may not be uniformly applied to Virtual bridges
- Need for uniform application of Network and Security policies
- Management information sharing between Network & Server domains
  - For example consistent application of policies incase of VM migration
  - Coexistence of different Virtual Bridge models





### **Considerations for Virtual Bridge Standardization ..(1)**

- Multiple Virtual Bridging models expected to coexist in future
- No standardization may cause proliferation of Virtual Bridges with varying level of functionality
  - Likely to cause interoperability and management problems
  - Loss of bridge transparency for functions such as VM migration
  - Potential compatibility issues with existing and future IEEE 801.1 bridging standards
- Standardization of minimum functionality for Virtual bridges
  - Provides consistent definition of Virtual Bridging functionality
  - Ensures interoperability with multi-vendor solutions
- Compatibility with existing and future IEEE 802.1 bridging standards
  - Security functions such as port based access control (802.1X)
  - Interoperability with emerging Data Center Bridging standards
  - Consistent MIBs
  - Sharing of management information between two administrative domains (Server management and Network Management)



### Considerations for Virtual bridging in Network Standardization ..(2)

- Standardization of solutions for Virtual Bridging in Networks Access Bridges
  - To ensure interoperability between Server and Network equipments
  - Standard mechanism for virtualization of Server Ethernet ports and Network Bridge ports
  - Protocol for transmission of Ethernet frames between Servers and Bridges
  - Protocol for configuration and management
- Compatibility with existing and future IEEE 802.1 bridging standards
  - Coexistence of Server based and Network based Virtual Bridge models
- Backward compatibility with existing Virtualized Server functionality
  - Compatibility with Virtual Server functionality such as VM Migration
  - Sharing of management information between two administrative domains (Server management and Network Management)



# Summary

#### Virtual Bridge evolution

- Server based, and Network based Virtual bridging models evolving and expected to coexist
- Not having standardized functionality would create potential interoperability in the ecosystem

#### Standardization considerations

- Standardization in IEEE 802.1 will ensure compatibility with existing and emerging 802.1 bridging standards
- Compatibility to Server virtualization functions such as VM migration across Virtual Bridge models
- Consider standardization of Server based, and Network based Virtual bridging models in IEEE 802.1

