Priority-based Flow Control and 802.3x

Manoj Wadekar
802.3x: Layer and Interfaces

MAC Client
- Data
- Control

MAC Control Sublayer
- MAC Client Control
- MAC Client Data

Media Access Control
- MAC Control Sublayer
- PHY

Control Request Infrastructure
- E.g. Interface for XON/XOFF requests
- And Indications about Rxed control frames

Flow Control
- E.g. Act upon Rxed XON/XOFF requests

Congestion Detection
- E.g. Resource thresholds

Congestion Management
- E.g. Generate XON/XOFF requests

Legend:
- Infrastructure standardized by 802.3
- Implementation dependent usage

802.3 has frame format and transmission selection
MAC Client has control, but unspecified
802.3x: Layer and Interfaces

MAC Client

Transmission Selection

PFC

Congestion Detection
E.g. Resource thresholds

Congestion Management
E.g. Generate XON/XOFF, PFC requests

Control Request Infrastructure
E.g. Interface for XON/XOFF requests
And Indications about Rxed control frames

Flow Control
E.g. Act upon Rxed XON/XOFF requests

Legend:
- Infrastructure standardized by 802.3
- Implementation dependent usage

802.1 to specify PFC frame, transmission selection and control
802.3 maintains link FC frame and TS
Few thoughts

• Leaving link level FC in 802.3 and Priority-based Flow Control in 802.1 – Is it necessary to keep it separate?

• Option 1:
 – Enhance 802.3 to handle PFC packets and enhance MAC-Client interface to support PFC
 – Provide FC and PFC request generation and response at queue level in 802.1

• Option 2:
 – Should we combine link Flow Control and Priority-based Flow Control in 802.1?
 – Migrate 802.3 functionality to 802.1
 – Deprecate 802.3x clause (31B) from 802.3
 • But, it appears – there are more 802.3 protocols that use same EtherType (EPON?)

• Option 3:
 – Leave Annex 31B in 802.3
 – Implement PFC functionality in 802.1
 – Do not consolidate these functions in documentation