Shortest Path Tree ID allocation for IEEE 802.1aq

Janos Farkas Don Fedyk Mick Seaman

Basic idea

- Distributed deterministic allocation mechanism based on the IS-IS topology database
- The allocation mechanism takes values from the pool of SPT IDs
- The mechanism is the same both for SPVID and Nickname
 - Both are SPT IDs but different size
 - SPVID: 12 bits
 - Nickname: 20 bits
- Requirements
 - Consistent allocation
 - Conflict resolution
 - Support configuration

Basic operation

- Allocations are made based on the IS-IS topology individually by each bridge itself
- SPT IDs are taken from a pool sequentially
 - A newcomer simply takes the first free SPT ID (or SPT IDs)
- SPT IDs basically assigned to bridges ties based on Bridge Priority

Conflict resolution

- Priority order for conflict resolution
 - Configured allocation
 - Allocation time (existing allocation is not kicked out by newcomers)
 - Bridge Priority
 - If Two or more Bridges have same configuration value Bridge Priority determines which bridge will be disabled as far as this VLAN is considered
- If allocation fails, then the Base VID is assigned to the bridge, which thus uses the IST in the SPT Region
 - Either conflicting configurations or running out of IDs
- Conflicts are resolved automatically at each bridge individually as LSPs propagated through the network
- Tree Agreement Protocol (TAP) ensures that neighbor bridges stay loop free
 - Neighbors only activate changes if their digest matches
 - The digest is made on the LSPs

Bridges attached almost the same time

Bridges attached almost the same time:

Bridges attached almost the same time:

Two regions attached

- Multiple conflicts
- TAP handshake blocks until digest matches
- As soon as everybody has all the LSPs they make the very same allocations thus neighbor digest matches

Further details

- SPT ID allocation ages with LSP ageing
- Reconnected bridge gets the same ID if it was not taken while the bridge was away
- Holes in the SPT ID pool are only filled in when the sequential space has been exhausted.

SPT Allocation Table

 Bridges don't need an allocation table but they may maintain the allocations if desired for operations

SPB, SPBB Format a

SPT ID	Base VID	Bridge ID	Configured
SPT ID ₁	Base VID ₁	Bridge ID ₁	1
SPT ID ₂	Base VID ₁	Bridge ID ₂	1
SPT ID ₃	Base VID ₁	Bridge ID ₃	1
SPT ID ₄	Base VID ₁	Bridge ID ₄	1
SPT ID ₅	Base VID ₂	Bridge ID ₁	0
SPT ID ₆	Base VID ₂	Bridge ID ₂	0
SPT ID ₇	Base VID ₂	Bridge ID ₃	0
SPT ID ₈	Base VID ₂	Bridge ID ₄	0

SPBB Format b

SPT ID	Base VID	Bridge ID	Configured
Nickname ₁	all	Bridge ID ₁	1
Nickname ₂	all	Bridge ID ₂	0
Nickname ₃	all	Bridge ID ₃	0
Nickname ₄	all	Bridge ID ₄	1