
111

Thoughts on DCBX

Joe Pelissier

az-pelissier-dcbx-thoughts-0109

222
az-pelissier-dcbx-thoughts-0109

Background

� DCBX provides two state machines

Control state machine

Provides acknowledgement of receipt of DCBX TLV

Feature state machine

Runs on top of the control state machine

Provides negotiation of features or operational parameters

In general, operates between a bridge and an end station

333
az-pelissier-dcbx-thoughts-0109

Negotiated parameters

� The current DCBX proposal provides for negotiation of the
following parameters:

Priority group parameters including:

Number of traffic classes supported

Priority group bandwidth percentage

Priority to priority group assignment

Priority Flow Control parameters including:

Number of traffic classes that support priority flow control

Priority flow control enabled per priority

Protocol parameters including:

Priority assignment for the protocol

� Let’s examine each of these Individually

444
az-pelissier-dcbx-thoughts-0109

But First…Some Mythbusting

� The Claim: we should keep at least a simplified
version of the DCBX framework to enable
negotiation of parameters

� The Reality: LLDP can provide this without any of
the DCBX protocol or feature state machines

And its remarkably easy to do…

555
az-pelissier-dcbx-thoughts-0109

LLDP Negotiation

� Assume we have a parameter that may be either “On” or “Off” that
we wish to negotiate in a manner similar to DCBX

� There are five related variables:

FE.OS: the operational state of the far end of the link, received via LLDP,
three values: “On”, “Off”, or NULL (indicating this value has not been
received via LLDP)

FE.W: indicates that the far end is willing to accept our operational state if
and only if we are not willing. Received via LLDP, values are True, False,
or NULL

MY.DS: my desired state for this parameter. Administratively set to “On”
or “Off”. Note: this is not transmitted in LLDP.

MY.W: indicates my willingness to accept the far end’s operational state if
and only if FE.W=FALSE. Transmitted in LLDP.

MY.OS: my current operational state, transmitted in LLDP, set as follows:

If (MY.W and !FE.W) then MY.OS<-FE.OS else MY.OS<-MY.DS

� That’s all folks!

666
az-pelissier-dcbx-thoughts-0109

Another Myth…

� Exchanging “Willing” is sufficient to prevent negotiation
thrashing

� The reality: If “willingness” is misconfigured, thrashing is still
possible

Consider 3 bridges: A, B, and C, all connected to each other

A is willing to accept B but not C

B is willing to accept C but not A

C is willing to accept A but not B

Forms a “Circle of Willingness” which could thrash indefinitely

� This is one reason why one should never use LLDP to
distribute parameters through switches

It is fundamentally insufficient

777
az-pelissier-dcbx-thoughts-0109

Priority group parameters

� Number of traffic classes supported

This parameter is informational and cannot be negotiated

Furthermore, knowing the number of traffic class
supported by an end station is not useful to a bridge since
the bridge does not have knowledge of the applications the
end station wishes to execute

Likewise knowing the number traffic classes the bridge
supports is not useful to the end station since the bridge in
general will map all priorities to available traffic classes

Since there is no expectation that this must be the same
between an end station and a bridge, “willing” has no
meaning

888
az-pelissier-dcbx-thoughts-0109

Priority group parameters

� Priority group bandwidth percentage

While this parameter could be negotiated it makes no sense to do
so

It is reasonable to expect that the bandwidth percentage assigned
by an end station would be different than the bandwidth
percentage assigned by the switch

Given the asymmetric nature of the traffic it would be reasonable to
expect that this would be the common case

There is no point negotiating this parameter although there is no
harm in exchanging it

Again, since there is no expectation that this must be the same
between an end station and a bridge, “willing” has no meaning

An endstation may adjust its BW assignments based on this
exchange, a bridge shall not.

999
az-pelissier-dcbx-thoughts-0109

Priority group parameters

� Priority to priority group assignment

In general priority group assignment has bridge wide if not
fabric wide relevance

An end station would not have sufficient visibility to
properly dictate these assignments for bridge

Likewise, a bridge does not have sufficient knowledge of
the applications executing on an end station to provide this
assignment for the end station

Furthermore there is no reason that these assignments
need to be consistent between an end station and the
bridge

There is no need to negotiate this parameter, nor is there
any meaning to “willing”

101010
az-pelissier-dcbx-thoughts-0109

Priority Flow Control parameters

� Number of traffic classes that support priority flow
control

This parameter represents a physical limitation of a bridge
or an end station and cannot be negotiated

A bridge has no need for knowledge of the end station’s
limitations since it does not have knowledge of the
applications that will be running on the end station

And an end station has no need to know this parameter
from its peer bridge since the bridge will map priorities
into the available traffic classes that do support per priority
flow control

Again, there is no meaning to “willing” in this case

111111
az-pelissier-dcbx-thoughts-0109

Priority Flow Control parameters

� Priority flow control enabled per priority

It is useful for an end station to know the priority flow control settings for its peer
bridge

However the use of priority flow control has fabric wide significance and therefore an
end station is not in a position to negotiate its use

It is not necessary for bridge to know whether it’s peer end station is capable of
supporting the priority flow control settings

If an end station chooses to operate without priority flow control on a priority for which it
is enabled by the bridge, the end station will simply lose frames; however, the rest of
the fabric will be protected

Likewise, if an end station chooses to ignore priority flow control on a priority for which
it is not enabled by the bridge, the bridge will simply ignore the priority flow control
frames and the fabric will operate as if it was not enabled by the end station

In summary, it is useful for the end station to know this information so that it may
configure itself for proper operation; however, this parameter is not negotiable

Furthermore the bridge does not need to have knowledge of the acceptance of this
parameter on the part of the end station in order to ensure proper fabric operation

� A bridge shall not adjust its PFC parameters based on what it receives via
LLDP from a peer bridge

Otherwise, a “Circle of Willingness” may occur

121212
az-pelissier-dcbx-thoughts-0109

Priority Flow Control parameters

� We currently state that if the PFC parameters (i.e. enabled or not per
priority) do not match, the feature is “disabled”

What does “disabled” mean in this context?

Does the bridge prohibit all communication on the port

This would make it difficult to correct the problem

Does the bridge prohibit communication on the unmatched priorities?

Could make it difficult to correct the problem

There is no harm in allowing communication to continue

End station cannot harm overall fabric operation

Whether this materially impacts the applications is beyond the ability
for the bridge to know (e.g. FCoE: possibly, iSCSI: probably not).

In general, the best policy is to allow communication to at least limp along
until the problem can be fixed

Which implies the bridge takes no action and “disabled” has no meaning

From an end station point of view, whether it attempts to provide
communication for a particular protocol given this mismatch is a matter
of local policy (most protocols would work fine either way)

131313
az-pelissier-dcbx-thoughts-0109

Protocol parameters

� Priority assignment for a protocol

Priority assignments in general have fabric wide significance

Therefore an end station would not have sufficient visibility to
dictate the priority assignment for a given protocol

It is useful for the bridge to inform an end station of the priority
assignment for a particular application to allow the end station to
configure itself for proper operation

It is not necessary for the bridge to have knowledge of the end
station’s acceptance of this parameter in order to ensure proper
fabric operation

If the bridge does not trust the end station to behave properly it may
simply enforce use of a particular priority for a given protocol (for
example by use of access control lists)

� A bridge shall not adjust these assignments based on data
received from LLDP (to prevent the “Circle of Willingness”

141414
az-pelissier-dcbx-thoughts-0109

Summary

� So far the parameters that we have defined to be exchanged
with DCBX fall into two categories:

Purely informational

Information from the bridge that the end station requires in order
to configure itself for proper operation

� We have no examples of parameters from an end station that
would be used by a bridge

� We have no examples of parameters that are actually
negotiable

� We would never want a bridge to adjust any parameter based
on LLDP that would be reflected through the bridge

Necessary to prevent the “Circle of Willingness”

151515
az-pelissier-dcbx-thoughts-0109

More observations

� The DCBX feature state machine is quite complex

There has been confusion around the use of various
combinations of willing and not willing

there has been confusion around the use of the error bit

There has been confusion around what it means to be compatible

It is not clear what it means for a feature to be enabled

For example if a particular feature is advertised by one end of the
link and not the other it will appear as enabled on the advertised
end but not on the un-advertised end

Clearly the fact that a bridge is not advertising a particular protocol
does not imply that the protocol is disabled on the bridge

� Do we have a solution that does not quite work for a problem
that does not quite exist?

161616
az-pelissier-dcbx-thoughts-0109

For consideration

� Is it sufficient to simply exchange these parameters without
the need of maintaining state related to “willing”, “enabled”,
and “error”

We do not appear to have any counterexamples

� If we encounter a counterexample, can we use simple LLDP
negotiation described at the beginning of this presentation?

� If this is the case, we could dramatically simplify DCBX by
simply eliminating the feature and protocol state machines

Reduces interoperability issues

Increases protocol robustness

Reduces user complexity

Simplifies and expedites specification development

171717
az-pelissier-dcbx-thoughts-0109

Thank You!

