
Bob Sultan (bsultan@huawei.com)
Ben Mack-Crane (tmackcrane@huawei.com)

Comparing LLDP/T3P and ACP for
use in evb protocols

2

LLDP/T3P Model
server

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

SVID14
VSI-PID Associations

bridge
SVID14

VSI-PID Associations

committed temp

LLDP/T3P

Periodic update (or update
triggered by change)

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

VS201 – PID9876

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

add VS201 – PID9876

VS201 – PID9876

VSI71 – PID3456

VSI34 – PID1234

delete VSI58 – PID2345

VS201 – PID9876

VSI71 – PID3456

VSI99 – PID4567

VSI34 – PID1234

add VSI58 – PID2345

VS201 – PID9876

VSI71 – PID3456

VSI99 – PID4567

VSI34 – PID1234

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

SVID14
VSI-PID Associations

LLDP/T3P

VS201 – PID9876

VSI71 – PID3456

VSI99 – PID4567

VSI34 – PID1234

3

Database Update Model
server

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

SVID14
VSI-PID Associations

bridge

ACP
request

VS201 – PID9876

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234 add VS201 – PID9876

VS201 – PID9876

VSI71 – PID3456

VSI34 – PID1234
delete VSI58 – PID2345

add VSI99 – PID4567

VS201 – PID9876

VSI71 – PID3456

VSI99 – PID4567

VSI34 – PID1234

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

SVID14
VSI-PID Associations

VS201 – PID9876

VSI71 – PID3456

VSI99 – PID4567

VSI34 – PID1234

VS201 – PID9876

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234
reply

ACP
request

reply

VS201 – PID9876

VSI71 – PID3456

VSI34 – PID1234

ACP
request

reply

4

Questions/comments in comparing the models
• It has been suggested that a benefit of using LLDP is that

this protocol is designed to ‘synchronize’ the database of
the LLDP receiver with that of the LLDP sender;

• The function that LLDP provides is the delivery of the
database from the sender to the receiver;

• The receiver then has two copies of the database that can
be compared for discrepancies;

• Discrepancies can be reported to the operator;
• LLDP provides no method to synchronize or harmonize the

sender and receiver versions of the database;
• If we assume that the sender (server) has the ‘valid’

version of the database, ‘synchronization’ could be
achieved by enforcing a rule that the receiver (bridge)
accepts the sender’s version of the database as
authoritative;

• So, if it is important that ‘all records in the database be
committed’ or ‘no records in the database be committed’ at
the receiver then LLDP is a useful way to achieve this;

5

Questions/comments in comparing the models
• So, is this ‘atomic’ commitment of the database a

requirement for evb?
• The argument put forth is that the VSI bindings associated

with a particular vPort should be committed as a unit as
they are interdependent with respect to their use of
resources like vPort bandwidth;

• That is, some outside agent has computed the appropriate
set of bandwidth reservations for VSIs associated with
each vPort; these are intended to be committed as a unit;

• But this is inconsistent with our evb model that the bridge
evaluate each individual binding (DB record) and reject
those for which it does not have resources;

• So, this is not a case where we guarantee that the
sender’s proposed version of the database is accepted or
rejected by the receiver;

• That is, there is no requirement to ‘synchronize’
databases;

6

Questions/comments in comparing the models
• We need only ‘synchronize’ individual database records;

that is, the sender proposes that a record be committed by
the receiver, and if that record is committed by the
receiver, a reply is sent to the sender indicating that it can
commit the record;

• It is not at all clear that LLDP is well-suited for this
application; it would seem that a simple request/reply
protocol is a better fit;

• But, a request/reply protocol has problems; for example,
what happens if the server reboots after a record has been
committed by the bridge?

• Committed records are associated with a TTL; on TTL
expiry, the record is aged-out;

• The sender can repeatedly request commitment of the
same record; the only impact is that the timeout value is
reset (ie. idempotency);

• If the sender disappears, the record will age-out;

7

Questions/comments in comparing the models
• If the sender re-appears, it makes a new commitment

request which is evaluated independent of whether or
not an earlier commitment has, or has not expired;

• It might be argued that, although evb does not require
database synchronization, LLDP is still a good fit for the
application because it allows multiple records to be sent
in a single frame;

• However, the current proposal for ACP allows a fully
equivalent level of ‘packing’;

• It might be argued that LLDP is useful even when the
receiver is allowed to commit some records and not
others;

• For example, after receiving a set of records for
proposed commitment, the bridge could evaluate each
records to determine whether that record can be
committed; each such record is associated with a state
(committed, or uncommitted); the bridge then sends an
LLDP message back to the server with the state of each
record; the server then accepts the states proposed by
the bridge;

8

Questions/comments in comparing the models
• It might be argued that the LLDP message from

the bridge to the server is a ‘reply’; its content
depends upon the LLDP message previously
sent from server to bridge;

• If we overlook this issue for a moment, we have
another problem; the server installs a record
with key X in its database; some time later, the
server receives an LLDP message from the
bridge containing a record with key X; how does
the server know whether
– A) the record X in the server database is the same

record X for which the ‘reply’ has been received; in
this case the record X in the server database should
be replaced by the record X in the reply;

– B) the record X in the server database has not yet
been sent to the bridge in an LLDP message; it
should not be replace by the record X in the reply;

9

Summary
• LLDP is designed to advertise a database and to allow

neighbors to identify discrepancies between local and
remote versions of the database;

• It is a simple use of LLDP to install the received version of
the database as the authoritative version;

• LLDP is not designed to selectively commit individual
records within the database;

• A request/reply protocol with timeout is a better fit for this
requirement;

• On its face, it would appear that a protocol that advertises
an entire database to update a record will either (a) require
a great deal of bandwidth or (b) introduce significant delay
in updating records if the frequency of advertisements is
reduced;

• This existance of LLDP is certainly a point in its favor, but
we must evaluate whether the changes to LLDP needed to
support this application will require more effort than the
introduction of an additional protocol;

10

Additional question about the LLDP/T3P Model
• The database on the server is really

hierarchical as shown on the left;
• In the LLDP/T3P model, what exactly is

the ‘database’ that is advertised?
• Is it everything at the left (in a single

LLDP message); Does each table form
an individual database?

• What criterion is used to determine the
scope of databases?

• If the criterion is inter-dependency, then
why would we assume that there is more
inter-dependency between records on
one vPort than there would be on
records associated with different vPorts?

• This is unclear in the current LLDP/T3P
proposal.

server

SVID47 - NRR

SVID23 - NRR

SVID14 - RR

SVID8 - RR

Physical Link 6
Channel Allocations

VSI99 – PID4567

VSI71 – PID3456

VSI58 – PID2345

VSI34 – PID1234

SVID14
VSI-PID Associations

VSI98 – PID8901

VSI95 – PID7890

VSI93 – PID6789

VSI84 – PID5678

SVID23
VSI-PID Associations

