Edge Virtual Bridging with VEB and VEPA (Summary)

May 2009 Chuck Hudson (HP) Paul Congdon (HP)

c.hudson@hp.com ptcongdon@ucdavis.edu

Edge Virtual Bridging An Edge-centric Definition

Edge Virtual Bridging (EVB) is an environment where physical end stations contain multiple virtual end stations that participate in the Ethernet network environment.

Note: EVB environments are unique in that vNIC configuration information is available that is not normally available to an 802.1Q bridge.

Edge Virtual Bridging

focused on...

- Virtual Machine Environments (Virtual Switch)
 - VMware ESX Server
 - Microsoft HyperV
 - Citrix XEN
 - Linux KVM (linux-kvm.org)
 - Others

- NICs with multiple vNICs that share a single link
 - PCI Single-root or Multiple-root IO Virtualization (SR-IOV, MR-IOV)
 - Other multi-vNIC technologies

Challenges at the Edge

- Visibility & Control
 - -System admins own the physical end stations
 - Lack of network admin control can mean inadequate:
 - Control of network access
 - Visibility of networking traffic
 - Support for debugging network issues
- Limited Embedded Capability
 - NICs have cost & complexity constraints (no TCAMs, no learning)
 - End-stations and bridges evolve independently

VEB & VEPA

Virtual Ethernet Bridge (VEB)

uses MAC+VID to steer frames

- Emulates 802.1 Bridge
- Loop-free, No STP
- Address Table:
 - No learning required, vNICs register MAC addresses
 - Local packet replication using address table
- Configured by hypervisor
- Requires settings for vPorts

Tag-less VEPA

uses MAC+VID to steer frames

- Steers frames via adjacent bridge
- Loop-free, No STP
- Address Table:
 - No learning required, vNICs register MAC addresses
 - Local packet replication using address table
- Configured by hypervisor
- Requires the same settings for vPorts

Basic VEPA Operation Multicast

SRC = A; DST = MulticastC

 All ingress frames forwarded to adjacent bridge

 VM

- 2. Frame forwarded by adjacent bridge.
- 3. Create delivery mask

DST Lookup = 101010 SRC Lookup = 100000 Delivery Mask = 001010

4. Deliver Frame Copies

VEPA Address Table

DST MAC	VLAN	Copy To (ABCDEF)	
Α	1	100000	
В	2	010000	
С	1	001000	
D	2	000100	
E	1	000010	
F	2	000001	
Bcast	1	101010	
Bcast	2	010101	
MulticastC	1	101010	
Unk Mcast	1	100010	
Unk Mcast	2	010101	
Unk Ucast	1	000000	
Unk Ucast	2	000000	

Promiscuous Ports at the edge...

- Promiscuous ports are not common at the edge in a virtualization environment... However,
 - Simultaneous operation of a VEB and VEPA provides both performance and flexibility
 - A small number of inline virtual appliances may be useful
 - The VN-Tag alternative believes it is necessary
- Approaches for handling promiscuous ports
 - Use a VEB
 - Use hypervisor security APIs instead
 - Have the VEPA learn (not really practical)
 - Use VLANs to isolate promiscuous ports

Benefits of VEB/VEPA Solution

- Simple extension to VEB
 - Similar port configuration
 - Similar address table
 - Minor changes to frame forwarding behavior
- Solves nearly all of the issues with VEBs
- Allows easy migration between VEB and VEPA modes
 - Could allow simultaneous operation of VEB and VEPA
- Requires minimal 802.1 standards effort
 - Configuration of hair-pin mode
- Easiest to implement
 - Can be implemented in many existing switches with a firmware update
 - Simple extension to existing vSwitches/VEBs

Issues with VN-Tag Approach

- Using multiple layers of VN-Tag network concentrators...
 - Significantly limits the network cross-sectional bandwidth
 - Increases congestion
 - Often increases the number of links traversed
- Constrains innovations in distributed computing
 - Blocks advantages of locality in distributed systems
 - Distributed storage solutions, nearby caching servers, etc.
 - Blocks benefits of increased end-station capabilities over time
- VN-Tags increases hardware complexity to end stations
 - Significantly different than already-required VEB
 - New forwarding and frame replication mechanisms
- VN-Tags require significant new standards efforts
 - New tag format
 - Management of remote frame replication
- VN-Tags will not work with any switch not specifically designed for it
 - Adds significant cost and complexity to controlling bridge
 - Constrains other bridges to be remote line cards for controlling bridge

Proposed

- IEEE 802.1 standardization of
 - Switch port operation when in 'hairpin' mode
 - Configuration of 'hairpin' mode
 - LLDP/DCBX capabilities exchange & configuration
 - Managed object definition
 - Possible configuration of hairpin for specific VIDs
- Industry Standardization of EVB management
 - Coordinated configuration of vPort settings for both VEB/VEPA
 - Mechanism & standards forum is still TBD
 - Probably not 802.1