Edge Virtual Bridging: A potential simplification

Joe Pelissier
new-pelissier-EVBSimplification-0709
Where we are…

- The EVB group has been meeting weekly and has been discussing a variety of issues related to data center Ethernet deployments.

- Two technologies have been discussed at length:

 VEPA provides greater visibility and control over embedded bridges and potentially augments their functionality.

 VNTag removes bridges (and much of their associated management costs) from the network that are primarily performing aggregation functions.

- These technologies address different problems in data center deployments:

 However, both of these technologies rely on forwarding a frame to a “controlling bridge” from which the frame may be forwarded back to the originating device (VEPA or Port Extender).
The problem...

- For Port Extenders to correctly operate, the Controlling bridge requires knowledge of the PE’s ingress port and the ability to explicitly indicate the PE’s egress port(s)
 - Both are required at egress for proper multicast pruning
 - Various approaches have been discussed to eliminate the need for this knowledge or supply it implicitly
 - For various technical and/or practical reasons, none were sufficient to promote migration from proprietary to standards based solutions

- VEPA does not require this indication for proper operation
 - However, having such an indication does provide VEPA with additional capability

- The VEPA controlling bridge function may be implemented in most bridges without hardware modification
 - Providing the ingress/egress indications would require hardware modification in most cases
A few bad paths…

- Just do both…
 Requires embedded devices to operate in two different modes with multiple hypervisor and OS implementations
 The test and verification matrix becomes impractical

- Do one or the other…
 Doing one does not address the problem set of the other
 Just gets us back to the approach above, only worse
 One problem set get solved by proprietary solutions

- Do neither
 Worst case of all of the above
 Both problems are solved by independent proprietary solutions

More than any time in history mankind faces a crossroads. One path leads to despair and utter hopelessness, the other to total extinction. Let us pray that we have the wisdom to choose correctly.
— Woody Allen
Goals

- From a VEPA point of view:
 Enable VEPA using currently deployed controlling bridge hardware
 Non-goal: Enable VEPA in the middle of the network
 Non-goal: Produce a device that is significantly less complex than existing VEBs

- From the NIC/VEB/IV point of view:
 Reduce modes of operation

- From a Port Extender point of view:
 Enable Port Extenders at both the edge and in the middle of the network
 Produce a device that is significantly less complex than existing VEBs
 Produce a standard that provides equivalent functionality to the VNTag proposal
 Non-goal: Drive VNTag verbatim through the standards
 Non-goal: Eliminate the need for VEBs (or VEPAs)
 Non-goal: Ensure PEs work with existing CB hardware
A potential path…

- Tweak the VEPA requirements such that a VEPA provides the functionality of a Port Extender

 An edge device may be a VEPA or a Port Extender

 If an edge device is a VEPA, there is no point in having a “Port Extender” mode

- Requirements to achieve this:

 An ability to provide an indication of ingress port

 An ability to process the egress port indication (which may be a single port or a pointer to a list of ports)

 Or provide equivalent egress functionality (this is key!)
A simplified approach

- An edge device that supports both VEPA and PE modes would look something like this ->

 M & S components add little (or no) value to VEPA southbound

 M & S components not necessarily required southbound for PE (could use VEPA forwarding tables)

 But does provide value in some cases

 Device processes two tag formats (M & S)

 Northbound, STag provides only a VEPA indication, not a VM indication

- We’ll examine how this might be accomplished in three steps:

 Northbound path (VEPA -> CB)

 Southbound path without replication (CB -> VEPA)

 Southbound path with replication (CB -> VEPA)
Heading North

From VEPA to Controlling Bridge
Breaking down a VEPA

- The VEPA portion of the device looks something like this ->

 The M-Component has been omitted since it does not perform any function northbound

 If the VEPA is attached to a “STag” capable CB, then the S-Component adds a tag that indicates the individual VEPA that sourced the frame

 If not, the S-Component simply aggregates the frames

- However, an S-Component also performs an aggregation function

 This creates an interesting possibility…
A Layered VEPA

- This provides almost the same functionality, except:

 The STag (if present) provides an indication of the VM, not just the VEPA

 Of course, we can make sure that a VM -> VEPA mapping is provided

- Also note that one valid operation of the VEPA ingress is to do nothing

 i.e. member of all VLAN groups, no ACLs, etc.

- This VEPA function now does everything VEPA and provides PE capability (at least it does northbound)
Heading South

From Controlling Bridge to VEPA without replication
Breaking down a VEPA (again)

- The VEPA portion of the device looks something like this ->
 - The M-Component has been omitted since it does not perform any function southbound without replication
 - If the VEPA is attached to a “STag” capable CB, then the S-Component removes the STag and forwards to the appropriate VEPA
 - If not, the S-Component simply forwards the frame to a given VEPA

- This time, we cannot replace the De-aggregation function with the S-Component
 - The De-aggregation function is required to support the case of a non-STag capable Controlling Bridge

- However, we could provide both…
A Layered VEPA

- In this model, the S-Componet is enabled if attached to an STag capable bridge
 Otherwise, De-aggregation is enabled
- This dual mode is not required
 De-aggregation provides the same behavior (at least in theory)
- However, when the STag is available, an implementation may find it advantageous to use it
 Reduces address table space
 Provides learning capability (i.e. support for VMs operating in “promiscuous mode”
- No point in prohibiting this use
- Also note that one valid operation of the VEPA egress is to do nothing
 i.e. member of all VLAN groups, no ACLs, etc.
- With or without the S-Component, the functionality of both a VEPA and PE is provided
Heading South Again (and again, and again)

From Controlling Bridge to VEPA with replication
Breaking down a VEPA (again)

- Replication is required for a variety of functions
 - VEPAs perform this function in the De-aggregation block for multicast
 - PEs need it for flooding, port mirroring, and multicast

- The VEPA portion of the device looks something like this ->
 - The M-Component is not required in the VEPA case since it performs replication based on MAC address (and never needs to flood since it has a priori knowledge of all MAC addresses, unless "promiscuous mode" is supported.
 - In the case of PEs, the M-Component architecturally interprets the M-Tag and creates multiple copies of the frame with appropriate STags
 - The S-Component then forwards the frames to the appropriate ports

- We cannot replace the De-aggregation function with the S-Component / M – Component combination
 - The De-aggregation function is required to support the case of a non-STag capable Controlling Bridge

- However, we could provide both…
A Layered VEPA

- In this model, the S-Component and M-Components are enabled if attached to an STag/MMtag capable bridge.
 - Otherwise, De-aggregation is enabled.
- This dual mode is not required.
 - De-aggregation provides the same behavior (at least in theory).
- However, when the MTAG is available, an implementation may find it advantageous to use it.
 - Enables external egress multicast ACLs in the CB, reduces space in forwarding tables, etc.
- No point in prohibiting this use.
- Also note that one valid operation of the VEPA egress is to do nothing.
 - i.e. member of all VLAN groups, no ACLs, etc.
- Either way, the functionality of both a VEPA and PE is provided.
Replication Observations

- Note that the M-Component and S-Component layering is architecturally elegant, but kind of a pain to implement
 - Optional for VEPAs
 - Required for PEs
- Frames may come in with two different tag formats (STag or MTag)
 - CB must produce these two different formats
- A tag could be created that performs both functions (which I’ll call an LTag)
Replication Observations

- If attached to an LTag capable CB, the L-Component function is enabled
 Otherwise, the De-aggregation function is enabled

- The LTag contains:
 - An indication of the source port
 - An indication of the destination port or port list
 - An indication of whether the destination is a port or a pointer to a list of ports

- The L-Component removes the LTag and forwards to the appropriate VEPA Egress Function or Functions
Multi-channel support

- In the original architecture, an STag could be used to route a frame to a particular VEPA.

 Then the VEPA de-aggregation function performs the replication based on MAC/VLAN.

- A similar approach is possible here:

 An LTag is used to route to a given De-aggregation function.

 The De-aggregation function performs replication.
Summary

This is surprisingly easy!
Summary

- An edge device can be:
 - A Port Extender
 - A VEPA
 - A VEB
 - Or, a combination

- Only one functional change to VEPA is required to eliminate any need for an edge device to support both modes:
 - Provide an ingress port indication rather than an ingress VEPA indication in the STag
 - The proposed architecture provides this

- Optionally, an implementation may choose to provide an L-Component southbound
Discovery and Operation

The edge device discovers if the CB is “STag capable”

If so, the tagging function in the S-Component is enabled

If not, the tagging function in the S-Component is disabled

The CB (potentially through intervening PEs) discovers if the edge device is “LTag capable”

If so, the CB and PEs forward the LTag

If not, the device immediately upstream from the edge (CB or PE) removes the LTag
Summary

- What exactly is a Port Extender?
 Northbound it’s an S-Component
 Southbound it’s an L-Component
Thoughts on PARs

- We need to define:

 Definition of PE operation

 Requires S-Component Extension, L (or M) component definition, hairpin mode (?)

 Definition of VEPA ingress/egress operation

 Requires S-Component Extension, (IMHO) L (or M) component definition, hairpin mode

 Extension to S-Component:

 allow it to not tag in certain cases (when a VEPA is attached to a non-STag aware bridge and when an STag is already present)

 Definition of “hairpin mode” operation

 The “hairpin mode” being discussed in RCSI may be more appropriate for PE operation

 Dependant upon definition of VEPA and PE

 IMHO, hairpin mode is dangerous enough that we should not start a project to define it until we have consensus on what is going to attach to it

- Essentially, everything depends on everything else

 Potentially have a single “Bridge Extension” PAR to cover all of it?
Questions and Thoughts?
Thank You!