
Agreement protocol
Agreement protocol sequencing
Mick Seaman

This note details the use of the Agreement Number (AN) and Discarded Agreement
Number (DAN) in the Agreement Protocol specified for P802.1aq Shortest Path Bridging1.
The protocol’s Agreement Digest summarizes the physical topology of the network, and is
computed in a way that ensures that the risk of protocol participants with different views of
that topology computing the same Digest is negligible. As a protocol participant encounters
topology changes, it2 successively limits the frames it forwards to a subset determined by
a set of loop-free forwarding rules3 for those successive topologies. Each participant
forwards using the full set of active topologies corresponding to its currently perceived
physical topology (i.e. ignores prior topologies) only when its Digest matches4 that of its
neighbours and sequence number conditions are met: it can then be sure that they are also
forwarding using that topology, or one of its subsequent subsets.

The need for the AN and DAN sequence numbers is due to the buffering between protocol
participants. SPB may run over long distance services that can exhibit significant delays
and a non-negligible, if small, risk of misordering. A participant needs to know that a prior
Digest value is not ‘in flight’ before declaring a topology match. Otherwise a neighbour
might use that value as a starting point after communicating a different prior value. The
sequence numbering also deals with misordering, without requiring additional mechanisms
to recover from arbitrary disruption or participant re-initialization.

In addition to providing an overview of the protocol and its operation, this note provides a
proof of correctness (guaranteeing loop-free behavior independent of message transit
delays) when protocol participants are connected by a service that either does not misorder
frames or where misordering can be detected by the specified protocol mechanisms (i.e.
when misordered messages are no more than one set of changes out of date.)

1. Introduction

In the absence of the AN and DAN sequence numbers,
the scenario illustrated in Figure 1 would be possible.
It starts with participants A(lice) and B(ob) basing
their calculations on the physical topologies
represented by digests ‘1’ and ‘2’ respectively. Then
(more or less at the same time) each receives link state
information communicating the other topology.
Agreement protocol messages originating with the
prior topology views cross, and each adopts full
forwarding based on two topologies whose arbitrary
combination might cause a loop.

While such a loop would have been resolved as soon
as Alice and Bob converge (using IS-IS mechanisms)
on the same physical topology, and the circumstances
that would cause it might be thought unlikely, they are
certainly not impossible if there are a number of

flapping links. Further agreement messages do not
resolve the issue by themselves: see Figure 2.
When each participant receives the second message in
Figure 2 (for topology ‘1’ in the case of Alice
receiving) it has no longer has a detailed record of the
old topology—it might differ slightly or considerably
from that current. Certainly the receiving participant
should not stop forwarding entirely because its peer
sees a different topology: indeed an agreement

1P802.1aq/D2.7 clauses 13.17, 13.27, 13.29.14, 13.29.28, 14, 28.11.3.5.1.
2There is a participant per Bridge Port and forwarding is limited only on a per port basis, so the neighbours concerned are only those attached to a single LAN
(often just one). A single match does not have to propagate throughout the network before forwarding is improved.
3See Link state agreement, March18th 2010.
4This note uses the term match rather than sync, synchronization, agree etc. as the latter already have meanings in the context of 802.1Q Clause 13. A ‘digest
match’ or ‘matching digests’ is used to mean that the Digests transmitted and received by a participant have the same value. A ‘topology match’ is only
declared if the digests match and the AN/DAN conditions specified in this note are met.

Figure 1—Crossing agreements

A B

11

2

2

1
2 Thick line shows full

forwarding on current topology.
Revision 1.0 July 11th 2010 Mick Seaman 1

http://www.ieee802.org/1/files/public/docs2008/aq-seaman-link-state-0310-v3.pdf

Agreement protocol
message with an unknown digest should be cached so
each participants need send only one message and
receive only one to move from complete forwarding
on one topology to complete forwarding on its
successor, as in Figure 3.

The scenario in Figure 1 is prevented by including the
AN (agreement number) and DAN (discarded
agreement number) in each agreement message. When
a participant calculates a new topology and the
accompanying digest1, it increments its own AN and
checks for a topology match. When the participant
receives an agreement protocol message, it sets its
transmitted DAN to the received AN, and then checks
for a topology match. If, on checking for a topology
match, the participant finds that the last received and
currently transmitted digests are equal, it sets its
transmitted DAN equal to the last received AN plus 1,
and if the last received DAN is also equal to its AN or
AN plus 1, it has matched topologies. In other words:

onTopologyUpdate()
{ tx.digest = calculatedDigest; tx.an++;

checkTopologyMatch();
}

onMessageReception()
{ rx.digest = msg.digest; rx.an = msg.an;

rx.dan = msg.dan; tx.dan = rx.an;
checkTopologyMatch();

}

checkTopologyMatch()
{ if (rx.digest == tx.digest)

{ tx.dan = rx.an+1;
if ((rx.dan == tx.an) || (rx.dan == tx.an+1))
{ topologyMatched();

} } }

Figure 4 shows how the sequence numbering handles
the Figure 1 scenario.

When the crossing messages are received, their DANs
lag rather than precede or equal the receivers’ ANs, so
a false topology match is not declared.

Figure 6 shows the influence of further messages, as
IS-IS converges on a stable physical topology.

Figure 6 shows the normal topology progression
introduced in Figure 3, including the last periodic
messages transmissions for the initial topology so the
initial state of the participants is clear. The actual
change to complete forwarding on the new topology
takes just two messages—one from each of the
participants.

1This description is a little simplistic, it ignores the fact that the new Digest cannot be transmitted until the forwarding changes required for the loop-free rules
have been made.

Figure 2—Further agreement messages

A B

11

2

2

12
2

1

Figure 3—Normal topology progression

A B

1

2

1

2

2

2 Figure 4—Handling crossing agreements

A B

1,a,b
1

2

2

1
2,b,a

tx.an == a
tx.dan == b
tx.digest == ‘1’
rx.an == b
rx.dan == a
rx.digest == 2;

tx.an == a+1
tx.digest == ‘2’

tx.an == b
tx.dan == a
tx.digest == ‘2’
rx.an == a
rx.dan == b
rx.digest == ‘1’;

tx.an == b+1
tx.digest == ‘1’

Figure 5—Further messages and stable topology

2,b+2,a+2

A B

1,a,b
1

2

2

1

2,a+1,b+1

2,a+1,b+3

2

rx.dan = b+1
rx.digest = ‘2’
rx.an = a+1
tx.dan = a+1

rx.dan = a
rx.digest = ‘2’
rx.an = b
tx.dan = b+1

tx.digest = ‘2’
tx.an == b+2
rx.an == a+1
tx.dan = a+2

1,b+1,a+1

tx.digest = ‘2’
tx.an = a+1
rx.dan == a
rx.digest == ‘2’
rx.an == b
tx.dan = b+1

tx.digest = ‘1’
tx.an = b+1
rx.dan == b
rx.digest == ‘1’
rx.an == a
tx.dan= a+1

rx.dan = b
rx.digest = ‘1’
rx.an = a
tx.dan = a+1

2,b,a

rx.dan = a+1
rx.digest = ‘1’
rx.an = b+1
tx.dan = b+1

rx.dan = a+2
rx.digest = ‘2’
rx.an = b+2
tx.dan = b+3

rx.dan = b+3
rx.digest = ‘2’
rx.an = a+1
tx.dan = a+2

forwarding on current topology.
Thick line shows full
Revision 1.0 July 11th 2010 Mick Seaman 2

Agreement protocol
Figure 7 shows what happens when there is a ‘glitch’
in the topology, a temporary change that is noted by
only one of the participants1.

2. Misordering
Without further refinement, the protocol as described
so far in this note handles a number of cases of
message reordering without creating potential
topology conflicts. The received DAN checking is
often a sufficient defence. However such conflicts are
possible, as illustrated in Figure 8.

These conflicts could be prevented by simply
discarding out-of-order frames, but if one participant
gets out of sync with the other (perhaps because it is
reinitialized) connectivity will be lost permanently. It
is highly undesirable to have to introduce additional
mechanisms to recover from this eventuality. The
solution is to restrict topology matches following out-
of-order reception to those where the received DAN is
the transmit AN plus one. This guarantees that the

received message was sent after both the receiving and
transmitting participants have settled on the same
topology. Such a match will always occur eventually
provided that IS-IS does cause both participants to
settle on the same topology. Subsequent matches can
use either the received DAN equals the received AN
and the ‘plus one’ condition.
onTopologyUpdate()
{ tx.digest = calculatedDigest; tx.an++;

checkTopologyMatch();
}
onMessageReception()
{ if (msg.an < rx.an) outOfOrder = True;

rx.digest = msg.digest; rx.an = msg.an;
rx.dan = msg.dan; tx.dan = rx.an;
checkTopologyMatch();

}
checkTopologyMatch()
{ if (rx.digest == tx.digest)

{ tx.dan = rx.an+1;
if (((rx.dan == tx.an) && !outOfOrder)

|| (rx.dan == tx.an+1))
{ topologyMatched(); outOfOrder = False;

} } }

3. Sequence number space
So far the protocol description has ignored the
limitations imposed by the small (two-bit) AN
sequence number space. In order to distinguish old
out-of-order messages from AN increments resulting
from several closely spaced changes with possible
message loss, the use of fresh AN’s needs to be
modified by feedback from each participant’s peer.
This is done by using the received DAN to rotate the
sequence number window. The transmit AN can be
increased as far as the received DAN plus one. Thus if
Alice’s AN is currently a, and her digest matches with

1The Agreement Digest reflects the physical topology, not the whole of the IS-IS state, in particular it omits IS-IS sequence numbers so one participant might
simply process the latest of a number of LSPs and thus miss temporary topology perturbations visible to others.

Figure 6—Handling normal topology progression

A B
1,a,b+1

1

2

1

2,a+1,b+2

2

tx.digest = ‘2’
tx.an == b+1
rx.an == a
tx.dan == a+1

1,b,a+1

tx.digest == ‘1’
tx.an = a
rx.dan == a+1
rx.digest == ‘1’
rx.an == b
tx.dan == b+1

tx.digest == ‘1’
tx.an == b
rx.dan == b+1
rx.digest == ‘1’
rx.an == a
tx.dan== a+1

rx.dan = b
rx.digest = ‘1’
rx.an = a
tx.dan = a+1

rx.dan = a+1
rx.digest = ‘1’
rx.an = b
tx.dan = b+1

rx.dan = a+1
rx.digest = ‘2’
rx.an = b+1
tx.dan = b+1

rx.dan = b+2
rx.digest = ‘2’
rx.an = a+1
tx.dan = a+2

2,b+1,a+1

tx.digest = ‘2’
tx.an == a+1
rx.an == b+1
tx.dan == a+2

Figure 7—Recovering from a glitch

A B
1,a,b+1

1

2

1

2,a+1,b+2

2

tx.digest = ‘2’
tx.an == b+1
rx.an == a
tx.dan == a+1

1,b,a+1

tx.digest == ‘1’
tx.an = a
rx.dan == a+1
rx.digest == ‘1’
rx.an == b
tx.dan == b+1

tx.digest == ‘1’
tx.an == b
rx.dan == b+1
rx.digest == ‘1’
rx.an == a
tx.dan== a+1

rx.dan = b
rx.digest = ‘1’
rx.an = a
tx.dan = a+1

rx.dan = a+1
rx.digest = ‘1’
rx.an = b
tx.dan = b+1

rx.dan = a+1
rx.digest = ‘2’
rx.an = b+1
tx.dan = b+1

rx.dan = b+2
rx.digest = ‘2’
rx.an = a+1
tx.dan = a+2

2,b+1,a+1

tx.digest = ‘2’
tx.an == a+1
rx.an == b+1
tx.dan == a+2

Figure 8—Misordering and conflict

A B

1

2

1

tx.digest == ‘1’
tx.an = a
rx.dan == a+1
rx.digest == ‘1’
rx.an == b
tx.dan == b+1

tx.digest == ‘1’
tx.an == b
rx.dan == b+1
rx.digest == ‘1’
rx.an == a
tx.dan== a+1

rx.dan = b+1
rx.digest = ‘2’
rx.an = a+1
tx.dan = a+1

rx.dan = b+1
rx.digest = ‘1’
rx.an = a+2
tx.dan = a+3

1,b,a+3

1

tx.digest = ‘2’
tx.an = a+1
rx.an == b
tx.dan == b+1

tx.digest = ‘1’
tx.an = a+2
rx.an == b
tx.dan == b+1

rx.dan = a+3
rx.digest = ‘1’
rx.an = b
tx.dan = b+1

2,a+1,b+1

1,b,a+2

2

1,a+2,b+1

tx.digest = ‘2’
tx.an = b+1
rx.an == b
tx.dan == b+1
Revision 1.0 July 11th 2010 Mick Seaman 3

Agreement protocol
Bob’s she would naturally expect to receive a message
with a DAN of a+1, giving her permission to transmit
with an AN of a+1 or a+21 before a further message
from Bob is required to rotate the window once more.
Thus a+3, which is indistinguishable from a-1, is
temporarily outside the widow, and Bob can identify
misordered messages as long as they are no more than
one topology change out of date.

onTopologyUpdate()
{ if ((tx.digest != calculatedDigest) &&

(tx.an+1 == tx.dan) || (tx.an+1 == tx.dan+1))
{ tx.digest = calculatedDigest; tx.an++;

checkTopologyMatch();
} }

onMessageReception()
{ if (msg.an == rx.an+3) outOfOrder = True;

rx.digest = msg.digest; rx.an = msg.an;
rx.dan = msg.dan; tx.dan = rx.an;
onTopologyUpdate();

}

checkTopologyMatch()
{ if ((rx.digest == tx.digest) &&

(tx.digest == calculatedDigest))
{ tx.dan = rx.an+1;

if (((rx.dan == tx.an) && !outOfOrder)
|| (rx.dan == tx.an+1))

{ topologyMatched(); outOfOrder = False;
} } }

Note that the checks performed on a topology update
are now also performed following message reception,
since the latter may have advanced the transmit AN
window so that the tx.digest can be updated.

4. When to transmit

Transmissions should occur periodically, so that
message loss does not delay topology agreement
indefinitely. When the Agreement Digest is carried in
BPDUs, the natural Hello Time of 2 seconds suffices
for this purpose. When it is desirable to also carry the
Agreement Digest in IS-IS Hellos (other message) a
refresh frequency suited to that of the carrying
protocol should be chosen. Transmission should also
be scheduled whenever the transmit AN and transmit
DAN are updated, but not otherwise. The result is that
(in the absence of message loss) any digest change that
will result in a match will result in the necessary
exchange of messages to take place, but the message
sequence will not be prolonged when that is not an

immediate possibility. Figures 5 through 7 illustrate
the desired behavior.

5. Multiple participants
Although not explicitly detailed so far in this note, I
hope it is reasonably clear that the protocol easily
accommodates groups of participants connected over
shared or pseudo-shared media2, at the cost of four bits
per participant3 in each protocol message multicast by
each participant to all the others. A topology match is
generally declared only when the digest and received
AN and DAN from each and every participant meets
the specified criteria.
In this way the agreement protocol can also be used in
non IS-IS scenarios where topology information is
directly carried in messages, and there is some set of
well defined rules as to what behavior is expected in
any configuration and how that behavior should
change in successive periods of change before the next
match is declared. The protocol is naturally efficient in
those scenarios, as its rules for matching involve the
minimal possible message exchange.

1If the peer participant has declared a topology match with the current digest, otherwise the window advances by one.
2Or over some more complex set of links.
3The cost of identifying which participant each set of bits belong to can be avoided as the participants are easily placed in order (by system id or MAC
address). The digest itself ensures that different participants agree on which participants are participating and which bits go with which.
Revision 1.0 July 11th 2010 Mick Seaman 4

Agreement protocol
6. Proofs

6.1 Loop-free in the absence of misordering

First we show that, unless protocol messages are
misordered, one participant will only declare a
topology match and remain forwarding on that
topology without further subsetting if the other has
declared a match or subsetted his forwarding using
that same topology.

The development of some simple terminology and
temporal logic allows us to see the wood for the trees
when representing the changing states of the protocol
participants and their inter-dependencies. We treat the
protocol as having an unlimited supply of sequence
numbers that are never reused, with only the real
integer part modulo 4 being carried in the two-bit
message fields. Since each increase in a transmitter’s
two-bit AN field is limited, knowledge of the prior
extended value allows a protocol observer to
determine the corresponding extended values without
ambiguity. It is also convenient to view the ANs
generated by Alice in any protocol run, together with
the DANs returned by Bob, as being drawn from a
different number space (ANA) from Bob’s ANs and
Alice’s DANs (ANB)1. Let:

a,a’,a’’ ∈ ANA
b,b’,b’’ ∈ ANB
∀ x ∈ ANA (x+1 ∈ ANA)
∀ x ∈ ANB (x+1 ∈ ANB)
ANA ∩ ANB = ∅

Since each participant increments its AN when and
only when the transmitted digest changes, we can
identify the digest value by its AN and define the
function D(x,y) as being True iff the digests identified
by x, y ∈ ANA ∪ ANB have the same value. Further:

∀ x ∀ y:(D(x,y)) (¬ D(x-1,y) ∧ ¬ D(x+1,y))

In addition each message can be represented simply by
its <an>.<dan> tuple, for example:

a.b+1

If we know to which participant we refer, the separate
sequence number spaces also facilitate identification
of receive and transmit variables2. These change, their
value in a logical expression is a function of time3 t:

a.b+1A — is True iff Alice’s ((tx.an == a) ∧
(tx.dan == b+1)) at time t

b.aA — refers to Alice’s receive variables
b.aB — refers to Bob’s transmit variables
a+1.*A — refers to Alice’s tx.an alone, and is

True iff her ((tx.an = a) at t, independent of tx.dan.

Strictly speaking:

a+1.*A ≡ ∃x: (a+1.xA)

and similarly for all other expressions including ‘*’.

If parts of any given logical statement are not qualified
as to time, the entire statement is considered as being
evaluated at the same time, e.g if p and q are declared
to be time dependent variables:

p ⇒ q

means that q is True when p is True. Note that the
individual members of ANA and ANB are time
independent (and are not boolean variables).

Let Mab denote the declaration of a topology match by
Alice at time t when her AN is a and the last message
she received from Bob had AN b. From the definition
of the protocol:

1 Mab ≡ (1)
(a.*A ∧ D(a,b)) (1a)
∧ ((b.aA) (1b.1)

∨ (b.a+1)A) (1b.2)

Equation 1 says that Alice declares a topology match
at time t when her transmit AN is a and the last
message she received from Bob had AN b iff: (a) her
transmit AN is indeed a, and the digests for a and b
match, and either: (b.1) the received AN is b (as
required) and the received DAN a; or (b.2) the
received AN is b and the received DAN a+1.

We wish to prove that:

2 ∃t1:((t = t1) ∧ Mab) (2)
⇒ ∃t0:(

∀ t:((t = t0) ∧ (t0 < t1))
(b.aB ∨ b.a+1B) (2a)

∧ ∀ t:((t0 < t) ∧ (t < t1))(
∀ b’:(¬D(b,b’))(¬Mb’*)) . . . (2b)

Equation 2 (required to prove) says that Alice’s
declaration of a topology match with transmit AN a
and received AN b at some time t1 implies that at some
earlier time t0 : (a) Bob’s transmit AN was b, and his

1The sets generated by a1 = 1 and b1 = 1+i and the successor function for each set are suitable.
2The messages are only interesting in that they permit one participant’s variables to result in a later change in the others. Conventional advice is to model the
channel(s) containing the messages within the overall system state, which causes the latter to be rather complex. Here we model the channel purely in terms of
possible changes to receive variables, or requirements on transmit variables if receive variables are to change.
3Formally there is a set of times, with an ordering relation, and a set of tuples for each time-dependent variable, with one element for each time value with that
value as part of the tuple and the value of the variable at that time as the other part of the tuple. Spelling this out every time we want the value of the variable
at a particular time is just a little tedious.
Revision 1.0 July 11th 2010 Mick Seaman 5

Agreement protocol
transmit DAN a or a+1—these are necessary
conditions for a message transmitted by Bob at that
time to result in the topology match Mab (see eqn. 1);
and (b) Bob did not declare a conflicting topology
match (with a digest that didn’t match that for b) in the
intervening time. These are sufficient conditions for
loop-freeness: the rules for transmitting any Digest
require Bob to reduce his forwarding to that (or a
subset of that) for the topology identified by the
Digest, and not to increase it unless he declares a
topology match. The equation (once proven) can be
applied (with the substitution of different free
variables in place of a and b) to successive topology
matches by both Alice and Bob, so a loop-free
condition will persist for ever.

Whenever t0 and t1 are used in this proof they refer to
time values that satisfy eqn. 2.

Alice’s declaration Mab requires her prior reception of
b.a or b.a+1 so proving (2a)—the existence of a
suitable t0—is trivial, it follows directly from:

3 ∃tj:((t = tj) ∧ y.xX) ⇒ (3)
∃ti:((ti < tj) ∧ ∀ t:(t = ti)y.xY≠X)

Equation 3: one participant’s receive AN and DAN
will not take given values unless those have previously
been the values of the other participant’s transmit AN
and DAN respectively1. This causality is generally
assumed without explicit reference below. The rules of
the protocol also require that each participant’s
(transmit) AN only increase over time:

4 ∃ti:(x.*X) (4)
⇒ ∀ t:(t ≥ ti)(∀ y:(y < x)(¬ y.*X))

Equation 4: If a participant’s (X’s) transmit AN is x at
time ti, then it cannot be y less than x later. Conversely
it was x at time tj it cannot be y greater than x earlier. If
messages are not delivered out of order, or out of order
messages are detected and discarded on receipt then
eqn. 4 means that the recipient’s receive AN can also
only increase over time. Any reference below to the
behavior of the protocol in the absence of misordering
may assume these properties.

Looking at (2a), we have from the protocol definition:

5 b.aB ∧ D(a,b) ⇒ (a-1.b’’B) :(b’’ ≤ b) (5)

Equation 5: If Bob’s transmit AN and DAN were
respectively b and a (with matching digests), then his
receive AN was a-12, with a digest matching that for
Bob’s transmit AN at or after the time of receipt but
before Bob’s transmit AN became b, since D(a-1,b) is
False (see above). As a consequence Bob’s received
DAN (b” above) cannot be greater than b3.
Furthermore (from eqn. 1):

6 ∀ t:(t = t1)(a.*A ∧ b.*A) (6)

so:

7 ¬∃ t:(∃ b’:(a-1.*A ∧ b’.*A ∧ (b’ > b)) (7)

and therefore (from (5) and (7)):

8 ∀ t(¬∃ b’:((b’ > b) ∧ a-1.b‘B)) (8)

Also4 looking at (2a), from the protocol definition:

9 b.a+1B ∧ D(a,b)⇒ a.*B ∨ a+1.*B (9)

In the absence of misordering:

10∀ t:((t0 ≤ t) ∧ (t ≤ t1))(. (10)
(∀ b':(b’.*B)(b’ ≥ b))

∧ (∀ a’:(a’.*B)((a’ = a) ∨ (a’ = a-1))

at and between t0 and t1 Bob’s transmit AN was
greater than or equal to b, and his receive AN was a or
a-1. A conflicting topology match could have only
taken place if these were not b and a respectively, so
using eqn. 1 and 10:

11∀ t:((t0 < t) ∧ (t < t1))(∀ a' ∀ b’: (11)
(¬D(b,b’) ∧ Mb’a’)
(b’.*B ∧ (b’ > b) ∧ (a’ = a-1)

∧ ∃b’’:(a’.b’’B ∧ ((b’’ = b’) ∨ (b’’ = b’+1))

Equation 11: At any time between t0 and t1, for any
transmit AN values a’, b’ such that Bob declares a
topology match conflicting with that for b (and, by
extension, with that for a), Bob’s transmit AN is b’
(greater than b), his receive AN is a-1, and his receive
DAN b’’ (equal to b’ or b’+1). But, eqn. 8 stated that
Bob’s receive variables can never be set to that
combination of values. So Bob cannot declare a
conflicting topology match.

Q.E.D.

1Messages can be lost, otherwise the implication ‘⇒’ would be bi-directional.
2Only the reception of a-1 (with a digest match at or after the time of receipt) and a could result in Bob having a transmit DAN of a, and if D(a.b) the latter
would result in a DAN of a+1, as in the following equation. Reception of an in-order message always results in tx.dan being set, it is not carried forward as it
can be on a topology update.
3If a participant’s AN is b-1 then its DAN cannot be greater than (b-1)+1.
4See eqn. 5 above.
Revision 1.0 July 11th 2010 Mick Seaman 6

	Agreement protocol sequencing
	1. Introduction
	Figure 1— Crossing agreements
	Figure 2— Further agreement messages
	Figure 3— Normal topology progression
	Figure 4— Handling crossing agreements
	Figure 5— Further messages and stable topology
	Figure 6— Handling normal topology progression
	Figure 7— Recovering from a glitch

	2. Misordering
	Figure 8— Misordering and conflict

	3. Sequence number space
	4. When to transmit
	5. Multiple participants
	6. Proofs
	6.1 Loop-free in the absence of misordering

